亚洲成色777777女色窝,777亚洲妇女,色吧亚洲日本,亚洲少妇视频

藥用植物學(xué)的含義

時(shí)間:2024-01-18 14:39:23

導(dǎo)語:在藥用植物學(xué)的含義的撰寫旅程中,學(xué)習(xí)并吸收他人佳作的精髓是一條寶貴的路徑,好期刊匯集了九篇優(yōu)秀范文,愿這些內(nèi)容能夠啟發(fā)您的創(chuàng)作靈感,引領(lǐng)您探索更多的創(chuàng)作可能。

藥用植物學(xué)的含義

第1篇

【關(guān)鍵詞】藥用植物;代謝組學(xué);功能基因組學(xué)

代謝組學(xué)是對(duì)生物體內(nèi)代謝物進(jìn)行大規(guī)模分析的一項(xiàng)技術(shù)[1],它是系統(tǒng)生物學(xué)的重要組成部分(如圖1所示),藥用植物代謝組學(xué)主要研究外界因素變化對(duì)植物所造成的影響,如氣候變化、營(yíng)養(yǎng)脅迫、生物脅迫,以及基因的突變和重組等引起的微小變化,是物種表型分析最強(qiáng)有力的工具之一。在現(xiàn)代中藥研究中,代謝組學(xué)在藥物有效性和安全性、中藥資源和質(zhì)量控制研究等方面具有重要理論意義和應(yīng)用價(jià)值。另外,在對(duì)模式植物突變體文庫或轉(zhuǎn)基因文庫進(jìn)行分析之前,代謝組學(xué)往往是首先考慮采用的研究方法之一。目前,國外已有成功利用代謝組學(xué)技術(shù)對(duì)擬南芥突變株進(jìn)行大規(guī)?;蚝Y選的例子,這為與重要性狀相關(guān)基因功能的闡明和選育可供商業(yè)化利用的轉(zhuǎn)基因作物奠定了基礎(chǔ)。

圖1系統(tǒng)生物學(xué)研究的四個(gè)層次略

目前,還有許多經(jīng)濟(jì)作物的全基因組測(cè)序計(jì)劃尚未完成,由于代謝組學(xué)研究并不要求對(duì)基因組信息的了解,所以在與這些作物有關(guān)的研究領(lǐng)域具有更大的利用價(jià)值,這也是其與轉(zhuǎn)錄組學(xué)和蛋白組學(xué)研究相比的優(yōu)勢(shì)之一。代謝組學(xué)研究涉及與生物技術(shù)、分析化學(xué)、有機(jī)化學(xué)、化學(xué)計(jì)量學(xué)和信息學(xué)相關(guān)的大量知識(shí),Fiehn[2]對(duì)代謝組學(xué)有關(guān)的研究方向進(jìn)行了分類(見表1)。

1代謝組學(xué)研究的技術(shù)步驟

代謝組學(xué)研究涉及的技術(shù)步驟主要包括植物栽培、樣本制備、衍生化、分離純化和數(shù)據(jù)分析5個(gè)方面(見圖2)。

1.1植物栽培

對(duì)研究對(duì)象進(jìn)行培育的目的是為了對(duì)樣本的穩(wěn)定性進(jìn)行控制,相對(duì)于微生物和動(dòng)物而言,植物的人工栽培需要考

表1代謝組學(xué)的分類及定義略

慮更多的問題,如中藥材在不同年齡、不同發(fā)育階段、不同部位以及光照、水肥、耕作等環(huán)境因素的微小差異都可引起生理狀態(tài)的變化,而這些非可控及可控雙重因素的影響很難進(jìn)行精確的控制,從而影響藥用植物代謝組研究的重復(fù)性。為了解決以上問題,推薦使用大容量的培養(yǎng)箱[3],定時(shí)更換培養(yǎng)箱中栽培對(duì)象的位置,以及使用無土栽培技術(shù)等,FukusakiE[4]利用無土栽培系統(tǒng)將水和養(yǎng)分直接引入植物根部,并且對(duì)供給量進(jìn)行精確地控制,大大提高了實(shí)驗(yàn)的重復(fù)性。

1.2樣本制備

為了獲得穩(wěn)定的實(shí)驗(yàn)結(jié)果,樣本制備需要考慮樣本的生長(zhǎng)、取樣的時(shí)間和地點(diǎn)、取樣量以及樣本的處理方法等問題,并根據(jù)分析對(duì)象的分子結(jié)構(gòu)、溶解性、極性等理化性質(zhì)及其相對(duì)含量大小對(duì)提取和分離的方法進(jìn)行選擇,逐一優(yōu)化試驗(yàn)方案。MaharjanRP等[5]用6種方法分別對(duì)大腸桿菌中代謝產(chǎn)物進(jìn)行提取,發(fā)現(xiàn)用-40℃甲醇進(jìn)行提取的效果最好。現(xiàn)階段代謝組學(xué)的分析對(duì)象主要集中在親水性小分子,尤其是初級(jí)代謝產(chǎn)物,氣相色譜質(zhì)譜聯(lián)用(GCMS)和毛細(xì)管電泳質(zhì)譜(CEMS)聯(lián)用都是分析親水小分子的重要技術(shù)。FiehnO等[6]使用GCMS對(duì)擬南芥葉片中的親水小分子進(jìn)行了分析,發(fā)現(xiàn)酒石酸半縮醛、檸蘋酸、別蘇氨酸、羥基乙酸等15種植物代謝物。

1.3衍生化處理

對(duì)目標(biāo)代謝產(chǎn)物的衍生化處理取決于所使用的分析設(shè)備,GCMS系統(tǒng)只適合對(duì)揮發(fā)性成分進(jìn)行分析,高效液相色譜法(HPLC)一般則使用紫外或熒光標(biāo)記的方法對(duì)樣本進(jìn)行衍生處理,BlauK[7]對(duì)酯化、酰化、烷基化、硅烷化、硼烷化、環(huán)化和離子化等衍生方法進(jìn)行了詳細(xì)的說明。然而離子化抑制常使得質(zhì)譜分析過程中目標(biāo)代謝產(chǎn)物的離子化效率降低,這主要是由于分離過程中污染物與目標(biāo)代謝物難以完全分離開所引起的,優(yōu)化色譜分離時(shí)間可有效緩解離子化抑制,然而在實(shí)際操作中不可能對(duì)上百種代謝產(chǎn)物的分離時(shí)間進(jìn)行優(yōu)化,利用非放射性同位素稀釋法進(jìn)行相對(duì)定量可以很好的解決該問題。HanDK等[8]應(yīng)用同位素編碼的親和標(biāo)記(ICAT),根據(jù)經(jīng)誘導(dǎo)分化的微粒蛋白及其同位素標(biāo)記物的峰面積比,對(duì)該蛋白的相對(duì)含量進(jìn)行分析。ZhangR等[9]發(fā)現(xiàn)同位素標(biāo)記技術(shù)也可用于代謝組學(xué)的研究,但是卻存在許多困難。活體的同位素標(biāo)記方法對(duì)于同位素的洗脫是一種非常有潛力的技術(shù),目前關(guān)于使用34s的研究已有報(bào)道[10]。

圖2代謝組學(xué)研究技術(shù)步驟略

1.4分離和定量

分離是代謝組學(xué)研究中的重要步驟,與質(zhì)譜聯(lián)用的色譜和電泳分析技術(shù)都是使用紫外或電化學(xué)檢測(cè)的方法進(jìn)行定量,其對(duì)代謝組數(shù)據(jù)的分辨率與定量能力都有一定的影響。TomitaM等[11]總結(jié)了各種色譜分離法中經(jīng)常遇到的技術(shù)問題,認(rèn)為毛細(xì)管電泳和氣相色譜法由于具有較高的分辨率,已成為代謝組學(xué)研究的常規(guī)技術(shù)手段之一,液相色譜因其適用范圍廣,應(yīng)用也相當(dāng)廣泛。

TanakaN等[12]用高效液相色譜對(duì)樣品進(jìn)行分離,認(rèn)為使用硅膠基質(zhì)填充毛細(xì)管整體柱的高效液相色譜系統(tǒng)具有用量少、靈敏性高、低壓降高速分離等優(yōu)勢(shì);同時(shí),TolstikovV等[13]也使用硅膠填充的毛細(xì)管液相色譜方法對(duì)聚戊烯醇類異構(gòu)體進(jìn)行了有效分離,獲得了很好的分辨率。TanakaN等[14]發(fā)現(xiàn)二維毛細(xì)管液相色譜法的分辨率比傳統(tǒng)的高效液相法高10倍。相對(duì)于其他色譜方法而言,超臨界流體色譜(SFC)是分離疏水代謝物最具潛力的技術(shù)之一,特別適用于分離那些傳統(tǒng)HPLC難以分析的疏水聚合物,BambaT等[15]通過SFC對(duì)聚戊烯醇進(jìn)行分析,證明其具有較好的分離能力。針對(duì)質(zhì)譜中存在的共洗脫現(xiàn)象,HalketJM等[16]發(fā)明了一種適用于GCMS的反褶積系統(tǒng),對(duì)共洗脫的代謝產(chǎn)物進(jìn)行分離與識(shí)別。AharoniA等[17]使用傅立葉變換離子回旋共振質(zhì)譜(FTICRMS)對(duì)非目標(biāo)代謝物進(jìn)行分析,快速掃描植物突變樣品,獲得了一定量的代謝成分。

與分離一樣,定量能力也是代謝組學(xué)研究中的重要因素,其取決于各分析系統(tǒng)的線性范圍。傅立葉轉(zhuǎn)換核磁共振(FTNMR)、傅立葉紅外光譜(FTIR)以及近場(chǎng)紅外光譜法(NIR)等技術(shù)由于敏感性低,重復(fù)性受共洗脫現(xiàn)象影響較小也被用于檢測(cè)中。近年來,FTNMR技術(shù)常被用于植物代謝組的指紋圖譜研究[18],但由于NMR分析需要樣品量較大,分析結(jié)果易受污染,GriffinJL[19]發(fā)現(xiàn)將統(tǒng)計(jì)模式識(shí)別與FTNMR相結(jié)合可以對(duì)代謝物進(jìn)行全面分析。除FTNMR之外,FTIR通過對(duì)有機(jī)成分的結(jié)構(gòu)進(jìn)行常規(guī)光譜測(cè)定,也可適用于代謝組學(xué)的研究,特別是應(yīng)用于構(gòu)建代謝組學(xué)的指紋圖譜。盡管它不能對(duì)代謝物進(jìn)行全面分析,但對(duì)具有特定功能的組分卻有很好的定量效果,對(duì)從工業(yè)及食品原材料中分離的代謝混合物也可以進(jìn)行全面分析,目前,已有學(xué)者將其成功地應(yīng)用于擬南芥[20]和番茄[21]代謝產(chǎn)物指紋圖譜的研究中。

1.5數(shù)據(jù)轉(zhuǎn)換

為闡明代謝物復(fù)雜的線性或非線性關(guān)系,需要進(jìn)行多變量分析,將原始的色譜圖數(shù)據(jù)轉(zhuǎn)換為數(shù)字化的矩陣數(shù)據(jù),通過對(duì)色譜峰鑒定和整合從而進(jìn)行多變量分析。由于環(huán)境等因素的干擾,光譜數(shù)據(jù)需要通過適當(dāng)?shù)臄?shù)據(jù)加工方法進(jìn)行校正,包括:①降低噪聲;②校正基線;③提高分辨率;④數(shù)據(jù)標(biāo)準(zhǔn)化。JonssonP等[22]報(bào)道了一種關(guān)于GCMS色譜圖數(shù)據(jù)處理的方法,可以對(duì)大量代謝產(chǎn)物樣品進(jìn)行有效的識(shí)別。

2代謝組學(xué)中的數(shù)據(jù)分析方法

2.1主成分分析法(PCA)

主成分分析法,將實(shí)測(cè)的多個(gè)指標(biāo)用少數(shù)幾個(gè)潛在的相互獨(dú)立的主成分指標(biāo)線性組合來表示,反映原始測(cè)量指標(biāo)的主要信息。使得分析與評(píng)價(jià)指標(biāo)變量時(shí)能夠找出主導(dǎo)因素,切斷其他相關(guān)因素的干擾,作出更為準(zhǔn)確的估量與評(píng)價(jià)。PCA數(shù)據(jù)矩陣通常來自于GCMS,LCMS或CEMS,因此將目標(biāo)代謝產(chǎn)物作為自變量,而相應(yīng)的代謝產(chǎn)物含量作為因變量,定義與最大特征值方向一致的特征向量為第一主成分,依此類推,PCA便能通過對(duì)幾個(gè)主要成分的分析,從代謝組中識(shí)別出有效信息。主成分分析有助于簡(jiǎn)化分析和多維數(shù)據(jù)的可視化,但是該方法可能導(dǎo)致一部分有用信息的丟失。

2.2層次聚類分析法(HCA)

層次聚類分析法也常用于代謝組學(xué)的研究中,它是將n個(gè)樣品分類,計(jì)算兩兩之間的距離,構(gòu)成距離矩陣,合并距離最近的兩類為一新類,計(jì)算新類與當(dāng)前各類的距離。再合并、計(jì)算,直至只有一類為止。進(jìn)行層次聚類前首先要計(jì)算相似度(similarity),然后使用最短距離法(NearestNeighbor)、最長(zhǎng)距離法(FurthestNeighbor)、類間平均鏈鎖法(BetweengroupsLinkage)或類內(nèi)平均鏈鎖法(WithingroupsLinkage)四種方法計(jì)算類與類之間的距離。該方法雖然精確,但計(jì)算機(jī)數(shù)據(jù)密集,對(duì)大量數(shù)據(jù)點(diǎn)進(jìn)行分析時(shí),更適合選用K均值聚類法(KMC)或批次自組織映射圖法(BLSOM),而HCA適合將數(shù)據(jù)轉(zhuǎn)換為主成分后使用。

2.3自組織映射圖法(SOM)

神經(jīng)網(wǎng)絡(luò)中鄰近的各個(gè)神經(jīng)元通過側(cè)向交互作用相互競(jìng)爭(zhēng),發(fā)展成檢測(cè)不同信號(hào)的特殊檢測(cè)器,這就是自組織特征映射的含義。其基本原理是將多維數(shù)據(jù)輸入為幾何學(xué)節(jié)點(diǎn),相似的數(shù)據(jù)模式聚成節(jié)點(diǎn),相隔較近的節(jié)點(diǎn)組成相鄰的類,從而使多維的數(shù)據(jù)模式聚成二維節(jié)點(diǎn)的自組織映射圖。除PCA和HCA外,SOM同樣也可應(yīng)用于包括基因組和轉(zhuǎn)錄組等組學(xué)研究中[23]。最初SOM計(jì)算時(shí)間長(zhǎng),依靠數(shù)據(jù)輸入順序決定聚類結(jié)果,近年來SOM逐漸發(fā)展成為不受數(shù)據(jù)錄入順序影響的批次自組織映射圖法(BLSOM)。由于BLSOM可以對(duì)類進(jìn)行調(diào)整,且有明確的分類標(biāo)準(zhǔn),優(yōu)化次序優(yōu)于其他聚類法,已在基因組學(xué)和轉(zhuǎn)錄組學(xué)數(shù)據(jù)分析中得到廣泛的應(yīng)用。

2.4其他數(shù)據(jù)采礦方法

除PCA、HCA和SOM外,很多變量分析方法都可用于植物代謝組學(xué)的分析。軟獨(dú)立建模分類法(SIMCA)是利用主成分模型對(duì)未知樣品進(jìn)行分類和預(yù)測(cè),適合對(duì)大量樣本進(jìn)行分析;近鄰分類法(KNN)和K平均值聚類分析法(KMN)也可用于樣品分類;主成分回歸法(PCR)或偏最小二乘回歸法(PLS)在某些情況下也可使用。然而到目前為止由于還沒有建立一個(gè)標(biāo)準(zhǔn)的數(shù)據(jù)分析方法,代謝組學(xué)仍然是一門有待完善的學(xué)科。

3代謝組學(xué)在藥用植物中的實(shí)踐

植物藥材來源于藥用植物體,而藥用植物體的形態(tài)建成是其體內(nèi)一系列生理、生化代謝活動(dòng)的結(jié)果。植物代謝活動(dòng)分為初生代謝和次生代謝,初生代謝在植物生命過程中始終都在發(fā)生,其通過光合作用、檸檬酸循環(huán)等途徑,為次生代謝的發(fā)生提供能量和一些小分子化合物原料。次生代謝往往發(fā)生在植物生命過程中的某一階段,其主要生物合成途徑有莽草酸途徑、多酮途徑和甲瓦龍酸途徑等。植物藥材含有的生物堿、胺類、萜類、黃酮類、醌類、皂苷、強(qiáng)心苷等活性物質(zhì)的絕大多數(shù)屬于次生代謝產(chǎn)物,因此探討次生代謝產(chǎn)物在藥用植物體內(nèi)的合成積累機(jī)制及其影響因素,對(duì)于提高活性物質(zhì)含量、保證藥材質(zhì)量、穩(wěn)定臨床療效等具有重要意義。孫視等[24]通過對(duì)銀杏葉中黃酮類成分積累規(guī)律的研究,提出了選擇具有一定環(huán)境壓力的次適宜生態(tài)環(huán)境解決藥用植物栽培中生長(zhǎng)和次生產(chǎn)物積累的矛盾。王昆等[25]以人參葉組織為材料,總結(jié)了構(gòu)建人參葉cDNA文庫過程中存在的一些關(guān)鍵問題和應(yīng)采取的對(duì)策,為今后關(guān)于人參有效成分如人參皂苷的生物合成途徑及其調(diào)控的基礎(chǔ)研究提供技術(shù)參考和理論指導(dǎo)。最近,美國加利福尼亞大學(xué)伯克利分校的Keasling等[26]采用一系列的轉(zhuǎn)基因調(diào)控方法,通過基因工程酵母合成了青蒿素的前體物質(zhì)——青蒿酸,其產(chǎn)量超過100mg/L,為有效降低抗瘧藥物的成本提供了機(jī)遇。經(jīng)過長(zhǎng)期的研究積累,人們對(duì)代謝途徑的主干部分(為次生代謝提供底物的初生代謝途徑)已經(jīng)基本了解,例如酚類的莽草酸途徑,萜類的異戊二烯二磷酸(IPP)途徑等。被子植物中一些相對(duì)保守的次生代謝途徑也得到了很好的研究,如黃酮類、木質(zhì)素的生物合成與調(diào)控。然而,對(duì)次生代謝最豐富最神奇的部分——特定產(chǎn)物合成與積累的過程,還所知甚少[27]。

4展望

近年來,代謝組學(xué)正日益成為研究的熱點(diǎn),越來越多的人已加入到代謝組學(xué)的研究中。隨著代謝組學(xué)積累的數(shù)據(jù)和信息量的增大,其在藥用植物學(xué)各個(gè)領(lǐng)域的應(yīng)用價(jià)值也與日俱增。它將不僅能對(duì)單個(gè)代謝物進(jìn)行全方面的分析,更能尋找其代謝過程中的關(guān)鍵基因、通過代謝指紋分析對(duì)藥用植物進(jìn)行快速分類、進(jìn)一步研究藥用植物有效成分代謝途徑以及環(huán)境因子對(duì)植物代謝和品質(zhì)的影響與調(diào)控機(jī)制。

然而依據(jù)傳統(tǒng)中醫(yī)藥學(xué)和系統(tǒng)生物學(xué)的指導(dǎo)思想,目前急待解決的是中藥種質(zhì)資源的代謝組學(xué)研究和中藥體內(nèi)作用的代謝組學(xué)研究。同時(shí),代謝組學(xué)在分析平臺(tái)技術(shù)、方法學(xué)手段和應(yīng)用策略等方面相對(duì)于其他組學(xué)技術(shù)還需要進(jìn)一步發(fā)展和完善,還需要其他學(xué)科的配合和介入。相信隨著更有力的成分分析設(shè)備的使用及代謝組數(shù)據(jù)庫的建立,藥用植物代謝組學(xué)將對(duì)中醫(yī)藥學(xué)產(chǎn)生深遠(yuǎn)的影響。

【參考文獻(xiàn)】

[1]WECKWERTHW.Metabolomicsinsystemsbiology[J].AnnuRevPlantBiol,2003,54:669-689.

[2]FIEHNO.Metabolomics—thelinkbetweengenotypesandphenotypes[J].PlantMolBiol,2002,48:155-171.

[3]TRETHEWEYRN.Metaboliteprofilingasanaidtometabolicengineeringinplants[J].CurrOpinPlantBiol,2004,7:196-201.

[4]FUKUSAKIE,IKEDAT,SUZUMURAD,etal.Afaciletransformationofarabidopsisthalianausingceramicsupportedpropagationsystem[J].JBiosciBioeng,2003,96:503-505.

[5]MAHARJANRP,FERENCIT.Globalmetaboliteanalysis:theinfluenceofextractionmethodologyonmetabolomeprofilesofEscherichiacoli[J].AnalBiochem,2003,313:145-154.

[6]FIEHNO,KOPKAJ,TRETHEWEYRN,etal.Identificationofuncommonplantmetabolitesbasedoncalculationofelementalcompositionsusinggaschromatographyandquadrupolemassspectrometry[J].AnalChe,2000,72:3573-3580.

[7]BLAUK,HALKETJM.Handbookofderivativesforchromatography[M].2nded.JohnWiley&Sons,Chichester,1993.

[8]HANDK,ENGJ,ZHOUH,etal.Quantitativeprofilingofdifferentiationinducedmicrosomalproteinsusingisotopecodedaffinitytagsandmassspectrometry[J].NatBiotechnol,2001,19:9469-9451.

[9]ZHANGR,SIOMACS,WANGS,etal.Fractionationofisotopicallylabeledpeptidesinquantitativeproteomics[J].AnalChem,2001,73:5142-5149.

[10]MOUGOUSJD,LEAVELLMD,SENARATNERH,etal.Discoveryofsulfatedmetabolitesinmycobacteriawithageneticandmassspectrometricapproach[J].ProcNatlAcadSciUSA,2002,99:17037-17042.

[11]TOMITAM,NISHIOKAT.Forefrontofmetabolomicsresearch[M].Tokyo:SpringerVerlagTokyo,2003.

[12]TANAKAN,KOBAYASHIH,ISHIZUKAN,etal.Monolithicsilicacolumnsforhighefficiencychromatographicseparations[J].JChromatogrA,2002,965:35-49.

[13]BAMBAT,FUKUSAKIE,NAKAZAWAY,etal.Rapidandhighresolutionanalysisofgeometricpolyprenolhomologuesbyconnectedoctadecylsilylatedmonolithicsilicacolumnsinhighperformanceliquidchromatography[J].JSepSci,2004,27:293-296.

[14]WIENKOOPS,GLINSKIM,TANAKAN,etal.Linkingproteinfractionationwithmultidimensionalmonolithicreversedphasepeptidechromatography/massspectrometryenhancesproteinidentificationfromcomplexmixtureseveninthepresenceofabundantproteins[J].RapidCommunMassSpectrom,2004,18:643-650.

[15]BAMBAT,FUKUSAKIE,NAKAZAWAY,etal.

Analysisoflongchainpolyprenolsusingsupercriticalfluidchromatographyandmatrixassistedlaserdesorptionionizationtimeofflightmassspectrometry[J].JChromatogrA,2003,995:203-207.

[16]HALKETJM,PRZYBOROWSKAA,STEINSE,etal.Deconvolutiongaschromatography/massspectrometryofurinaryorganicacidspotentialforpatternrecognitionandautomatedidentificationofmetabolicdisorders[J].RapidCommunMassSpectrom,1999,13:279-284.

[17]AHARONIA,RICDEVOSCH,VERHOEVENHA,etal.NontargetedmetabolomeanalysisbyuseofFouriertransformioncyclotronmassspectrometry[J].Omics,2002,6:217-234.

[18]OTTKH,ARANIBARN,SINGHB,etal.Metabolomicclassifiespathwaysaffectedbybioactivecompouds.ArtificialneuralnetworkclassificationofNMRspectraofplantextracts[J].Phytochemistry,2003,62:971-985.

[19]GRIFFINJL.Metabonomics:NMRspectroscopyand

patternrecognitionanalysisofbodyfluidsandtissuesforcharacterisationofxenobiotictoxicityanddiseasediagnosis[J].CurrOpinChemBiol,2003,7:648-654.

[20]GIDMANAE,GOODACREBR,EMMETTCB,etal.Investigatingplantplantinterferencebymetabolicfingerprinting[J].Phytochemistry,2003,63:705-710.

[21]JOHNSONHE,BROADHURSTD,GOODACRER,etal.Metabolic

fingerprintingofsaltstressedtomatoes[J].Phytochemistry,2003,62:919-928.

[22]JONSSONP,GULLBERGJ,NORDSTROMA,etal.AstrategyforidentifyingdifferencesinlargeseriesofmetabolomicsamplesanalyzedbyGC/MS[J].AnalChem,2004,76:1738-1745.

[23]HIRAIMY,YANOM,GOODENOWEDB,etal.IntegrationoftranscriptomicsandmetabolomicsforunderstandingofglobalresponsestonutritionalstressesinArabidopsisthaliana[J].ProcNatlAcadSciUSA,2004,101:10205-10210.

[24]孫視,劉晚茍,潘福生,等.生態(tài)條件對(duì)銀杏葉黃酮含量積累的影響[J].植物資源與環(huán)境,1998,7(3):1-7.

[25]王昆,王穎,鮑永利,等.人參葉cDNA文庫構(gòu)建中的問題與對(duì)策[J].人參研究,2005,17(4):2-4.

第2篇

關(guān)鍵詞:慕課;《有機(jī)化學(xué)》;翻轉(zhuǎn)課堂

中圖分類號(hào):G642 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1674-9324(2017)06-0139-02

信息化教育是以現(xiàn)代教學(xué)理念為指導(dǎo)思想,在信息技術(shù)支持下,應(yīng)用現(xiàn)代教學(xué)方法而展開的一種教學(xué)模式[1]?!澳秸n”伴隨著時(shí)代的進(jìn)步,脫穎而出。我?!队袡C(jī)化學(xué)》作為化學(xué)專業(yè)的四大基礎(chǔ)課程之一,其教學(xué)形式仍屬傳統(tǒng)。如何在“慕課”這場(chǎng)教育的改革中積極參與,有效實(shí)施,提升《有機(jī)化學(xué)》理論和實(shí)驗(yàn)教學(xué)的質(zhì)量,培養(yǎng)學(xué)生課程學(xué)習(xí)的應(yīng)用能力與創(chuàng)新能力,值得大家思考。

一、慕課背景

“慕課”(MOOC,Massive Open Online Courses)指大規(guī)模在線開放課程教育平臺(tái),其含義“大規(guī)模、開放性的在線課程”[2]。2011年它在美國快速崛起,2013年在中國拉開帷幕,中國著名大學(xué)北大、清華等陸續(xù)加入國際慕課平臺(tái),國內(nèi)建成了包括“中國大學(xué)MOOC”、“學(xué)堂在線”等多個(gè)具有影響力的中文慕課學(xué)習(xí)平臺(tái),這極大地沖擊了當(dāng)前的高等教育模式。到2015年初,僅“中國大學(xué)慕課”一家平臺(tái)預(yù)告的慕課課程數(shù)就達(dá)到460門[3]。

“慕課”的優(yōu)勢(shì)在于從以教師為中心真正翻轉(zhuǎn)為以學(xué)生為主體,通過在線方式,加強(qiáng)學(xué)生和教師之間的交流,培養(yǎng)學(xué)生的主人翁意識(shí)與態(tài)度[4-6]?!澳秸n”的核心理念是“微課程、小測(cè)驗(yàn)、及時(shí)解答、學(xué)習(xí)自主”,使學(xué)生更易獲取知識(shí),掌握運(yùn)用知識(shí)[7],符合網(wǎng)絡(luò)信息時(shí)代學(xué)習(xí)碎片化、方便化的需求。當(dāng)前無線網(wǎng)絡(luò)覆蓋面廣,智能手機(jī)、可移動(dòng)性數(shù)碼產(chǎn)品在學(xué)生中非常普及,因此慕課實(shí)現(xiàn)了與智能平臺(tái)、應(yīng)用軟件的無縫連接,成為適應(yīng)科技發(fā)展、符合時(shí)代潮流的一種新的教育、學(xué)習(xí)模式[8]。

二、《有機(jī)化學(xué)》課程教學(xué)現(xiàn)狀

1.《有機(jī)化學(xué)》理論教學(xué)的現(xiàn)狀?!队袡C(jī)化學(xué)》是化學(xué)學(xué)科的專業(yè)基礎(chǔ)課,內(nèi)容涉及面廣,多與其他學(xué)科相互滲透。在《有機(jī)化學(xué)》中化學(xué)反應(yīng)復(fù)雜,機(jī)理難于掌握,學(xué)生在面對(duì)解決實(shí)際問題時(shí)缺乏有效的方法與途徑。除此之外,《有機(jī)化學(xué)》還是化學(xué)學(xué)科中最為活躍的I域之一,其課程教學(xué)內(nèi)容新知識(shí)的劇增與有限的學(xué)時(shí)之間矛盾日益顯著[9]。多媒體的教學(xué)手段無疑對(duì)于增加課程內(nèi)容的信息量是十分有益的,它將文字、聲音、圖像、動(dòng)畫和視頻于一體,直觀明了地把抽象、繁雜的內(nèi)容形象地展示給學(xué)生[10]。但多媒體教學(xué)中,信息量大、授課節(jié)奏快、主線不明顯等問題仍然存在。

2.《有機(jī)化學(xué)》實(shí)驗(yàn)教學(xué)的現(xiàn)狀。目前我?!队袡C(jī)化學(xué)》實(shí)驗(yàn)教學(xué)現(xiàn)狀:部分化學(xué)實(shí)驗(yàn)設(shè)備昂貴、試劑和耗材價(jià)格過高;很多實(shí)驗(yàn)涉及到有害、有毒試劑的使用,但考慮到綠色、環(huán)保和實(shí)驗(yàn)安全等相關(guān)問題,這類實(shí)驗(yàn)一般只講其原理,不進(jìn)行實(shí)踐。

與此同時(shí)在教學(xué)方法上,學(xué)生在課前通過課本等參考資料預(yù)習(xí)實(shí)驗(yàn)內(nèi)容;課堂中教師講解實(shí)驗(yàn)原理、裝置、步驟及注意事項(xiàng)之后,學(xué)生一邊操作練習(xí),教師一邊進(jìn)行指導(dǎo);課后實(shí)驗(yàn)總結(jié)及撰寫實(shí)驗(yàn)報(bào)告。受傳統(tǒng)實(shí)驗(yàn)教學(xué)思想和方法的制約,學(xué)生興趣不高,主觀能動(dòng)性低,實(shí)驗(yàn)預(yù)習(xí)往往流于形式,“照方抓藥”的現(xiàn)象普遍存在,學(xué)生的實(shí)驗(yàn)設(shè)計(jì)、探究能力、解決實(shí)際問題能力得不到提高,教學(xué)效果不夠理想。

三、《有機(jī)化學(xué)》教學(xué)的改革措施

“慕課”這種新興的教學(xué)模式被國內(nèi)外學(xué)校廣泛采用,并取得了初步的成功,這種開放自由的學(xué)習(xí)方式也逐漸被大眾所接受。但是,針對(duì)我校的教學(xué)現(xiàn)狀,慕課還無法完全替代教師的作用,必須與翻轉(zhuǎn)課堂及傳統(tǒng)教學(xué)相融合,才能夠達(dá)到理想的教學(xué)效果。根據(jù)目前我?!队袡C(jī)化學(xué)》教學(xué)中存在的實(shí)際問題,建議從以下幾個(gè)方面進(jìn)行教育改革實(shí)踐。

1.教學(xué)內(nèi)容。目前大學(xué)生考研仍然作為一種緩解就業(yè)壓力的途徑,我院學(xué)生選擇的院校及專業(yè)不再單一。在《有機(jī)化學(xué)》教學(xué)中,根據(jù)學(xué)生的考研志向,推薦相應(yīng)教材及MOOC教程,使不同層次要求的學(xué)生有目的、有效果的進(jìn)行學(xué)習(xí),使得學(xué)生在面對(duì)“985”、“211”時(shí)不再望而卻步。實(shí)驗(yàn)中,利用多種形式的數(shù)字化資源,充實(shí)實(shí)驗(yàn)內(nèi)容,豐富學(xué)生感受,激發(fā)學(xué)習(xí)興趣。

2.教學(xué)環(huán)節(jié)。引入“慕課”元素,借助信息化手段輔助教學(xué)。例如,《有機(jī)化學(xué)》中《有機(jī)化合物的結(jié)構(gòu)解析》在各類有機(jī)課本中都是比較重要的章節(jié),但由于內(nèi)容較抽象、譜圖繁多、信息量大等原因,其教學(xué)效果一直不佳。如果利用仿真軟件按照背景知識(shí)、基本概念、原理、應(yīng)用前沿等方面將抽象的理論或過程直觀地展現(xiàn)給學(xué)生,使學(xué)生能夠直觀地理解其工作原理或過程,同時(shí)選取已有MOOC平臺(tái)上優(yōu)秀的視頻教學(xué)內(nèi)容,結(jié)合學(xué)生有機(jī)實(shí)驗(yàn)內(nèi)容中自己合成的化合物、生活中常見有機(jī)物的鑒定,充分發(fā)揮信息化手段促進(jìn)教學(xué)水平提高的效果,提高學(xué)生的主觀能動(dòng)性。

有機(jī)實(shí)驗(yàn)中采用傳統(tǒng)實(shí)驗(yàn)室和虛擬實(shí)驗(yàn)室相結(jié)合的方式,不僅讓學(xué)生對(duì)有機(jī)實(shí)驗(yàn)有最直接的感受和訓(xùn)練,而且還可以自主選擇時(shí)間與空間,在不需要藥品、實(shí)驗(yàn)設(shè)備的條件下,通過仿真軟件對(duì)大型儀器的工作原理、參數(shù)設(shè)置、常見問題等環(huán)節(jié)有一定的理解,并完成實(shí)驗(yàn)過程,觀察實(shí)驗(yàn)現(xiàn)象。這種模擬的學(xué)習(xí)方式使得學(xué)生可以有目的、有針對(duì)性地進(jìn)行反復(fù)多次的實(shí)驗(yàn)練習(xí),不用擔(dān)心實(shí)驗(yàn)的安全、藥品和儀器的損耗等問題,同時(shí)彌補(bǔ)了大型儀器設(shè)備缺乏造成的學(xué)生實(shí)驗(yàn)技能訓(xùn)練的缺失。

3.教學(xué)方式。傳統(tǒng)教學(xué)與翻轉(zhuǎn)課堂相結(jié)合,建設(shè)《有機(jī)化學(xué)》網(wǎng)絡(luò)答疑平臺(tái)。化學(xué)是以實(shí)驗(yàn)為基礎(chǔ)的學(xué)科,實(shí)驗(yàn)技能技巧的訓(xùn)練非常重要。有機(jī)實(shí)驗(yàn)分為基礎(chǔ)操作及實(shí)驗(yàn)技術(shù)的學(xué)習(xí)和有機(jī)化合物的制備兩部分內(nèi)容,在基礎(chǔ)操作及實(shí)驗(yàn)技術(shù)的學(xué)習(xí)時(shí),傳統(tǒng)教學(xué)為主,翻轉(zhuǎn)課堂為輔。教師可以為每一個(gè)有機(jī)實(shí)驗(yàn)制作微視頻,在引導(dǎo)學(xué)生思考分析原理及可能出現(xiàn)問題的同時(shí),教會(huì)規(guī)范的儀器組裝及操作要求,以期獲得較好的實(shí)驗(yàn)結(jié)果。學(xué)生在實(shí)驗(yàn)之前針對(duì)教材內(nèi)容及視頻資料進(jìn)行預(yù)習(xí),對(duì)實(shí)驗(yàn)過程進(jìn)行最直觀的了解,在實(shí)驗(yàn)操作練習(xí)中,盡量做到心中有數(shù),脫開課本,同時(shí)針對(duì)視頻中提出的問題,在實(shí)驗(yàn)操作練習(xí)中尋找答案,這樣學(xué)生的探究能力在思考問題和解決問題的過程中得到了提高。在有機(jī)化合物的制備部分的學(xué)習(xí)中,以學(xué)生主動(dòng)查找合成設(shè)計(jì)為主,課本教材為輔,學(xué)生借助學(xué)校已有的網(wǎng)絡(luò)課程平臺(tái),觀看傳統(tǒng)合成操作,查閱資料,比較優(yōu)缺點(diǎn),設(shè)計(jì)自己的合成路線,通過網(wǎng)絡(luò)答疑平臺(tái)與教師進(jìn)行交流,篩選最佳方案。網(wǎng)絡(luò)答疑平臺(tái)不僅彌補(bǔ)了課堂教學(xué)的不足,而且學(xué)生從被動(dòng)學(xué)習(xí)轉(zhuǎn)變?yōu)橹鲃?dòng)探究,學(xué)生的學(xué)習(xí)興趣得到了激發(fā),教師和學(xué)生之間的交流和協(xié)作更加緊密,教學(xué)質(zhì)量將大大提高。

參考文獻(xiàn):

[1]張晗,馬群,李印龍.教學(xué)信息化平臺(tái)的建設(shè)及應(yīng)用實(shí)踐[J].中國醫(yī)學(xué)教育技術(shù),2016,(2):187-190.

[2]劉鑫春.對(duì)我國實(shí)施慕課教學(xué)的一些思考[J].攀枝花學(xué)院世紀(jì)之星創(chuàng)新教育論壇,2015:32-34.

[3]殷丙山,李玉.慕課發(fā)展及其對(duì)開放大學(xué)的啟示[J].北京廣播電視大學(xué)學(xué)報(bào),2013,(5):29-32.

[4]李濤.全球MOOC浪潮中的藥用植物學(xué)教學(xué)改革[J].藥學(xué)教育,2014,30(6):32-35.

[5]張紅艷.慕課及慕課引發(fā)的教育變革探析[J].中國教育技術(shù)裝備,2014,(12):16-17.

[6]陸源,厲旭云,葉治國.自主學(xué)習(xí)、自主實(shí)驗(yàn)、自主創(chuàng)新教學(xué)研究[J].實(shí)驗(yàn)技術(shù)與管理,2012,29(6):11-16.

[7]溫燕梅.慕課時(shí)代的有機(jī)化學(xué)實(shí)驗(yàn)教學(xué)改革初探[J].廣東化工,2014,41(18):180-183.

[8]肖得力,何華,季一兵,李潔.慕課在《分析化學(xué)》教學(xué)中的應(yīng)用與啟示[J].廣州化工,2015,43(21):197-199.