亚洲成色777777女色窝,777亚洲妇女,色吧亚洲日本,亚洲少妇视频

量子力學(xué)基本概念

時間:2023-12-07 10:20:20

導(dǎo)語:在量子力學(xué)基本概念的撰寫旅程中,學(xué)習(xí)并吸收他人佳作的精髓是一條寶貴的路徑,好期刊匯集了九篇優(yōu)秀范文,愿這些內(nèi)容能夠啟發(fā)您的創(chuàng)作靈感,引領(lǐng)您探索更多的創(chuàng)作可能。

第1篇

關(guān)鍵詞:量子力學(xué);教學(xué)探索;普通高校

中圖分類號:G642.0 文獻標志碼:A 文章編號:1674-9324(2013)50-0212-02

一、概論

量子力學(xué)從建立伊始就得到了迅速的發(fā)展,并很快融合其他學(xué)科,發(fā)展建立了量子化學(xué)、分子生物學(xué)等眾多新興學(xué)科。曾謹言曾說過,量子力學(xué)的進一步發(fā)展,也許會對21世紀人類的物質(zhì)文明有更深遠的影響[1]。

地處西部地區(qū)的貴州省,基礎(chǔ)教育水平相對落后。表1列出了2005年到2012年來的貴州省高考二本理科錄取分數(shù)線,從中可知:自2009年起二本線已經(jīng)低于60%的及格線,并呈顯越來越低的趨勢。對于地方性新升本的普通本科學(xué)校來講,其生源質(zhì)量相對較低。同時,在物理學(xué)(師范)專業(yè)大部分學(xué)生畢業(yè)后的出路主要是中學(xué)教師、事業(yè)單位一般工作人員及公務(wù)員,對量子力學(xué)的直接需求并不急切。再加上量子力學(xué)的“曲高和寡”,學(xué)生長期以來形成學(xué)之無用的觀念,學(xué)習(xí)意愿很低。在課時安排上,隨著近年教育改革的推進,提倡重視實習(xí)實踐課程、注重學(xué)生能力培養(yǎng)的觀念的深入,各門課程的教學(xué)時數(shù)被壓縮,量子力學(xué)課程課時從72壓縮至54學(xué)時,課時被壓縮25%。

總之,在學(xué)校生源質(zhì)量逐年下降、學(xué)生學(xué)習(xí)意愿逐年降低,且課時量大幅減少的情況下,教師的教學(xué)難度進一步增大。以下本人結(jié)合從2005至10級《量子力學(xué)》的教學(xué)經(jīng)驗,談一下教學(xué)方面的思考。

二、依據(jù)學(xué)生情況,合理安排教學(xué)內(nèi)容

1.根據(jù)班級的基礎(chǔ)區(qū)別化對待,微調(diào)課程內(nèi)容。考慮到我校學(xué)生的實際情況和需要,教學(xué)難度應(yīng)與重點院校學(xué)生有差別。同時,通過前一屆的教學(xué)積累經(jīng)驗,對后續(xù)教學(xué)應(yīng)有小的調(diào)整。在備課時,通過微調(diào)教學(xué)內(nèi)容來適應(yīng)學(xué)習(xí)基礎(chǔ)和能力不同的學(xué)生。比如,通過課堂教學(xué)及作業(yè)的反饋,了解該班學(xué)生的學(xué)習(xí)狀態(tài),再根據(jù)班級學(xué)習(xí)狀況的不同,進行后續(xù)課程內(nèi)容的微調(diào)。教學(xué)中注重量子力學(xué)基本概念、規(guī)律和物理思想的展開,降低教學(xué)內(nèi)容的深度,注重面上的擴展,進行全方位拓寬、覆蓋,特別是降低困難題目在解題方面要求,幫助學(xué)生克服學(xué)習(xí)的畏難心理。

2.照顧班內(nèi)大多數(shù),適當降低數(shù)學(xué)推導(dǎo)難度。對于教學(xué)過程中將要碰到的數(shù)學(xué)問題,可采取提前布置作業(yè)的方法,讓學(xué)生主動去復(fù)習(xí),再輔以教師課堂講解復(fù)習(xí),以解決學(xué)生因為數(shù)學(xué)基礎(chǔ)差而造成的理解困難。同時,可以通過補充相關(guān)數(shù)學(xué)知識,細化推導(dǎo)過程,降低推導(dǎo)難度來解決。比如:在講解態(tài)和力學(xué)量的表象時[2],要求學(xué)生提前復(fù)習(xí)線性代數(shù)中矩陣特征值、特征向量求解及特征向量的斯密特正交化方法。使學(xué)生掌握相關(guān)的數(shù)學(xué)知識,這對理解算符本征方程的本征值和本征函數(shù)起了很大的推動作用。

3.注重量子論思想的培養(yǎng)。量子論的出現(xiàn),推動了哲學(xué)的發(fā)展,給傳統(tǒng)的時空觀、物質(zhì)觀等帶來了巨大的沖擊,舊的世界觀在它革命性的沖擊下分崩離析,新的世界觀逐漸形成。量子力學(xué)給出了一套全新的思維模式和解決問題的方法,它的思維模式跟人們的直覺和常識格格不入,一切不再連續(xù)變化,而是以“量子”的模式一份一份的增加或減少。地方高校的學(xué)生數(shù)學(xué)基礎(chǔ)較差,不愿意動手推導(dǎo),學(xué)習(xí)興趣較低,量子力學(xué)的教學(xué),對學(xué)生量子論思維方式的培養(yǎng)就顯得尤為重要。為了完成從經(jīng)典理論到量子理論思維模式的轉(zhuǎn)變,概念的思維方式是基礎(chǔ)、是重中之重。通過教師的講解,使學(xué)生理解量子力學(xué)的思考方式,并把經(jīng)典物理中機械唯物主義的絕對的觀念和量子力學(xué)中的概率的觀念相聯(lián)系起來,在生活中能夠利用量子力學(xué)的思維方式思考問題,從而達到學(xué)以致用的目的。

4.跟蹤科學(xué)前沿,隨時更新科研進展??茖W(xué)是不斷向前發(fā)展的,而教材自從編好之后多年不再變化,致使本領(lǐng)域的最新研究成果,不能在教材中得到及時體現(xiàn)。而發(fā)生在眼下的事件,最新的東西才是學(xué)生感興趣的。因此,我們可以利用學(xué)生的這種心理,通過跟蹤科學(xué)前沿,及時補充量子力學(xué)進展到教學(xué)內(nèi)容中的方式,來提高學(xué)習(xí)量子力學(xué)的興趣。教師利用量子力學(xué)基本原理解釋當下最具轟動性的科技新聞,提高量子力學(xué)在現(xiàn)實生活中出現(xiàn)的機會,同時引導(dǎo)學(xué)生利用基本原理解釋現(xiàn)實問題,從而培養(yǎng)學(xué)生理論聯(lián)系實際的能力。

三、更新教學(xué)手段,提高教學(xué)效率

1.拓展手段,量子力學(xué)可視化。早在上世紀90年代初,兩位德國人就編制完成了名為IQ的量子力學(xué)輔助教學(xué)軟件,并在此基礎(chǔ)上出版了《圖解量子力學(xué)》。該書采用二維網(wǎng)格圖形和動畫技術(shù),形象地表述量子力學(xué)的基本內(nèi)容,推動了量子力學(xué)可視化的前進。近幾年計算機運算速度的迅速提高,將計算物理學(xué)方法和動畫技術(shù)相結(jié)合,再輔以數(shù)學(xué)工具模擬,應(yīng)用到量子力學(xué)教學(xué)的輔助表述上,使量子力學(xué)可視化。通過基本概念和原理形象逼真的表述,學(xué)生理解起來必將更加輕松,其理解能力也會得到提高。

2.適當引入英語詞匯。在一些漢語解釋不是特別清楚的概念上,可以引入英文的原文,使學(xué)生更清晰的理解原理所表述的含義。例如,在講解測不準關(guān)系時,初學(xué)者往往覺得它很難理解。由于這個原理和已經(jīng)深入人心經(jīng)典物理概念格格不入,因此初學(xué)者往往缺乏全面、正確的認識。有學(xué)生根據(jù)漢語的字面意思認為,測量了才有不確定度,不測量就不存在不確定。這時教師引入英文“Uncertainty principle”可使學(xué)生通過英文原意“不確定原理”知道,這個原理與“測量”這個動作的實施與否并沒有絕對關(guān)系,也就是說并不是測量了力學(xué)量之間才有不確定度,不測量就不存在,而是源于量子力學(xué)中物質(zhì)的波粒二象性的基本原理。

3.提出問題,引導(dǎo)學(xué)生探究。對于學(xué)習(xí)能力較強的學(xué)生,適當引入思考題,并指導(dǎo)他們解決問題,從而使學(xué)生得到基本的科研訓(xùn)練。比如,在講解氫原子一級斯塔克效應(yīng)時,提到“通常的外電場強度比起原子內(nèi)部的電場強度來說是很小的”[2]。這時引入思考題:當氫原子能級主量子數(shù)n增大時,微擾論是否還適用?在哪種情況下可以使用,精確度為多少?當確定精度要求后,微擾論在討論較高激發(fā)態(tài)時,這個n能達到多少?學(xué)生通過對問題的主動探索解決,將進一步熟悉微擾論這個近似方法的基本過程,理解這種近似方法的精神。這樣不僅可以加深學(xué)生對知識點的理解,還可以得到基本的科研訓(xùn)練,從而引導(dǎo)學(xué)生走上科研的道路。

4.師生全面溝通,及時教學(xué)反饋。教學(xué)反饋是教學(xué)系統(tǒng)有效運行的關(guān)鍵環(huán)節(jié),它對教和學(xué)雙方都具有激發(fā)新動機的作用。比如:通過課堂提問及觀察學(xué)生表情變化的方式老師能夠及時掌握學(xué)生是否理解教師所講的內(nèi)容,若不清楚可以當堂糾正。由此建立起良好的師生互動,改變單純的灌輸式教學(xué),在動態(tài)交流中建立良好的教學(xué)模式,及時調(diào)整自己的教學(xué)行為。利用好課程結(jié)束前5分鐘,進行本次課程主要內(nèi)容的回顧,及時反饋總結(jié)。通過及時批改課后作業(yè),了解整個班級相關(guān)知識及解題方法的掌握情況。依據(jù)反饋信息,對后續(xù)課程進行修訂。

通過雙方的反饋信息,教師可以根據(jù)學(xué)生學(xué)習(xí)中的反饋信息分析、判定學(xué)生學(xué)習(xí)的效果,學(xué)生也可以根據(jù)教師的反饋,分析自己的學(xué)習(xí)效率,檢測自己的學(xué)習(xí)態(tài)度、水平和效果。同時,學(xué)生學(xué)習(xí)行為活動和結(jié)果的反饋是教師自我調(diào)控和對整個教學(xué)過程進行有效調(diào)控的依據(jù)[6]。

四、結(jié)論

量子力學(xué)作為傳統(tǒng)的“難課”,一直是學(xué)生感到學(xué)起來很困難的課程。特別是高校大擴招的背景下,很多二本高校都面臨著招生生源質(zhì)量下降、學(xué)生學(xué)習(xí)意愿不高的現(xiàn)狀,造成了教師教學(xué)難度進一步增大。要增強學(xué)生的學(xué)習(xí)興趣,提高教學(xué)質(zhì)量,教師不僅要遵循高等教育的教學(xué)規(guī)律,不斷加強自身的學(xué)術(shù)水平,講課技能,適時調(diào)整教學(xué)內(nèi)容,采取與之相對應(yīng)的教學(xué)手段,還需要做好教學(xué)反饋,加強與學(xué)生的溝通交流,了解學(xué)生的真實想法,并有針對性的引入與生活、現(xiàn)實相關(guān)的事例,提高學(xué)生學(xué)習(xí)量子力學(xué)的興趣。

參考文獻:

[1]曾謹言.量子力學(xué)教學(xué)與創(chuàng)新人才培養(yǎng)[J].物理,2000,(29):436.

[2]周世勛,陳灝.量子力學(xué)教程[M].高等教育出版社,2009:101.

[3]楊林.氫原子電子概率分布可視化及其性質(zhì)研究[J].綏化學(xué)院學(xué)報,2009,(29):186.

[4]常少梅.利用Mathematica研究量子力學(xué)中氫原子問題[J].科技信息,2011,(26):012.

[5]喻力華,劉書龍,陳昌勝,項林川.氫原子電子云的三維空間可視化[J].物理通報,2011,(3):9.

第2篇

圖景。

一、量子力學(xué)突破了經(jīng)典科學(xué)的機械決定論,遵循因果加統(tǒng)計的非機械決定論

經(jīng)典力學(xué)是關(guān)于機械運動的科學(xué),機械運動是自然界最簡單也是最普遍的運動。說它最簡單,因為機械運動比較容易認識,牛頓等人又采取高度簡化的方法研究力學(xué),獲得了空前成功;說它最普遍,因為機械力學(xué)有廣泛的用途,容易把它絕對化。[2]機械決定論是建立在經(jīng)典力學(xué)的因果觀之上,解釋原因和結(jié)果的存在方式和聯(lián)系方式的理論。機械決定論認為因和果之間的聯(lián)系具有確定性,無論從因到果的軌跡多么復(fù)雜,沿著軌跡尋找總能確定出原因或結(jié)果;機械決定論的核心在于只要初始狀態(tài)一定,則未來狀態(tài)可以由因果法則進行準確預(yù)測。[3]其實,機械決定論僅僅適用于宏觀物體,而對于微觀領(lǐng)域以及客觀世界中大量存在的偶然現(xiàn)象的研究就產(chǎn)生了統(tǒng)計決定論。[4]

量子力學(xué)是對經(jīng)典物理學(xué)在微觀領(lǐng)域的一次革命。量子力學(xué)所揭示的微觀世界的運動規(guī)律以及以玻爾為代表的哥本哈根學(xué)派對量子力學(xué)的理解,同物理學(xué)機械決定論是根本相悖的。[5]按照量子理論,微觀粒子運動遵守統(tǒng)計規(guī)律,我們不能說某個電子一定在什么地方出現(xiàn),而只能說它在某處出現(xiàn)的幾率有多大。

玻恩的統(tǒng)計解釋指出,因果性是表示事件關(guān)系之中一種必然性觀念,而機遇則恰恰相反地意味著完全不確定性,自然界同時受到因果律和機遇律的某種混合方式的支配。在量子力學(xué)中,幾率性是基本概念,統(tǒng)計規(guī)律是基本規(guī)律。物理學(xué)原理的方向發(fā)生了質(zhì)的改變:統(tǒng)計描述代替了嚴格的因果描述,非機械決定論代替了機械決定論的統(tǒng)治。

經(jīng)典統(tǒng)計力學(xué)雖然也提出了幾率的概念,但未能從根本上動搖嚴格決定論,量子力學(xué)的沖擊則使機械決定論的大廈坍塌了。量子力學(xué)揭示并論證了人們對微觀世界的認識具有不可避免的隨機性,它不遵循嚴格的因果律。任何微觀事件的測定都要受到測不準關(guān)系的限定,不可能確切地知道它們的位置和動量、時間和能量,只能描述和預(yù)言微觀對象的可能的行為。因此,量子力學(xué)必須是幾率的、統(tǒng)計的。而且,隨著認識的發(fā)展,人們發(fā)現(xiàn)量子統(tǒng)計的隨機性,不是由于我們知識和手段的不完備性造成的,而是由微觀世界本身的必然性(主客體相互作用)所注定。

二、量子力學(xué)使得科學(xué)認識方法由還原論轉(zhuǎn)化為整體論

還原論作為一種認識方法,是指把高級運動形式歸結(jié)為低級運動形式,用研究低級運動形式所得出的結(jié)論代替對高級運動形式的本質(zhì)認識的觀點。它用已分析得出的客觀世界中的主要的、穩(wěn)定的觀點和規(guī)律去解釋、說明要研究的對象。其目的是簡化、縮小客體的多樣性。這種方法在人類認識處于初級水平上無疑是有效的。如牛頓將開普勒和伽利略的定律成功地還原為他的重力定律。但是還原論形而上學(xué)的本質(zhì),以及完全還原是不可能的,決定了還原論不能揭示世界的全貌。

量子力學(xué)認為整體與部分的劃分只有相對意義,整體的特征絕非部分的疊加,而是部分包含著整體。部分作為一個單元,具有與整體同等甚至還要大的復(fù)雜性。部分不僅與周圍環(huán)境發(fā)生一定的外在聯(lián)系,同時還要表現(xiàn)出“主體性”,可將自身的內(nèi)在聯(lián)系傳遞到周邊,并直接參與整體的變化。因而,部分與整體呈現(xiàn)了有機的自覺因果關(guān)系。在特定的臨界狀態(tài),部分的少許變化將引起整體的突變。[6]

波粒二象性是微觀世界的本質(zhì)特征,也是量子論、量子力學(xué)理論思想的靈魂。用經(jīng)典觀點來看,也就是按照還原論的思想,粒子與波毫無共同之處,二者難以形成直觀的統(tǒng)一圖案,這是經(jīng)典物理學(xué)通過部分還原認識整體的方法,是“向上的原因”??墒俏⒂^粒子在某些實驗條件下,只表現(xiàn)波動性;而在另一些實驗條件下,只表現(xiàn)粒子性。這兩種實驗結(jié)果不能同時在一次實驗中出現(xiàn)。于是,玻爾的互補原理就在客觀上揭示了微觀世界的矛盾和我們關(guān)于微觀世界認識的矛盾,并試圖尋找一種解決矛盾的方法,這就是微觀粒子既具有粒子性又具有波動性,即波粒二象性。這就是整體論觀點強調(diào)的“向下的原因”,即從整體到部分。同樣,海森伯的測不準原理說明不能同時測量微觀粒子的動量和位置,這也說明絕不能把宏觀物體的可觀測量簡單盲目地還原到微觀。由此我們可以看出,造成經(jīng)典科學(xué)觀與現(xiàn)代科學(xué)觀認識論和方法論不同的根本在于思考和觀察問題的層面不同。經(jīng)典科學(xué)一味地強調(diào)外在聯(lián)系觀,而量子力學(xué)則更強調(diào)關(guān)注事物內(nèi)部的有機聯(lián)系。所以,量子力學(xué)把內(nèi)在聯(lián)系作為原因從根本上動搖了還原論觀點。

三、量子力學(xué)使得科學(xué)思維方式由追求簡單性發(fā)展到探索復(fù)雜性

從經(jīng)典科學(xué)思維方式來看,世界在本質(zhì)上是簡單的。牛頓就說過,自然界喜歡簡單化,而不喜歡用什么多余的原因以夸耀自己。追求簡單性是經(jīng)典科學(xué)奮斗的目標,也是推動它獲取成功的動力。開普勒以三條簡明的定律揭示了看似復(fù)雜的太陽系行星運動,牛頓更是用單一的萬有引力說明了千變?nèi)f化的天體行為。因而現(xiàn)代科學(xué)是用簡單性解釋復(fù)雜性,這就隱去了自然界的豐富多樣性。

量子力學(xué)初步揭示了客觀世界的復(fù)雜性。經(jīng)典科學(xué)的簡單性是與把物理世界理想化相聯(lián)系的。經(jīng)典物理學(xué)所研究的是理想的物質(zhì)客體。它不但用理想化的“質(zhì)點”、“剛體”、“理想氣體”來描述物體,而且把研究對象的條件理想化,使研究的視野僅僅局限于人們自己制定的范圍之內(nèi)。而客觀世界并不是如此,特別是進入微觀領(lǐng)域,微觀粒子運動的幾率性、隨機性;觀測對象和觀測主體不可分割性等都足以說明自然界本身并不是我們想象的那么簡單。

在現(xiàn)代科學(xué)中,牛頓的經(jīng)典力學(xué)成了相對論的低速現(xiàn)象的特例,成為非線性科學(xué)中交互作用近似為零的情況,在量子力學(xué)中是測不準關(guān)系可以忽略時的理論表述。復(fù)雜性的提出并不是要消滅簡單性,而是為了打破簡單性獨占的一統(tǒng)地位。復(fù)雜性是把簡單性作為一個特例包含其中,正如莫蘭所說的,復(fù)雜性是簡單性和復(fù)雜性的統(tǒng)一。復(fù)雜性比簡單性更基本,可能性比現(xiàn)實性更基本,演化比存在更基本。[7]今天的科學(xué)思維方式,不是以現(xiàn)實來限制可能,而是從可能中選擇現(xiàn)實;不是以既存的實體來確定演化,而是在演化中認識和把握實體。復(fù)雜性主張考察被研究對象的復(fù)雜性,在對其作出層次與類別上的區(qū)分之后再進行溝通,而不是僅僅限于孤立和分離,它強調(diào)的是一種整體的協(xié)同。

四、量子力學(xué)使科學(xué)活動中主客體分離邁向主客互動

經(jīng)典科學(xué)思維方式的一個指導(dǎo)觀念就是,認為科學(xué)應(yīng)該客觀地、不附加任何主觀成分地獲取“照本來樣子的”世界知識。玻爾告訴人們,根本不存在所謂的“真實”,除非你首先描述測量物理量的方式,否則談?wù)撊魏挝锢砹慷际菦]有意義的!測量,這一不被經(jīng)典物理學(xué)考慮的問題,在面對量子世界如此微小的測量對象時,成為一個難以把握的手段。因為研究者的介入對量子世界產(chǎn)生了致命的干擾,使得測量中充滿了不確定性。在海森伯看來,在我們的研究工作由宏觀領(lǐng)域進入微觀領(lǐng)域時,我們就會遇到一個矛盾:我們的觀測儀器是宏觀的,可是研究對象卻是微觀的;宏觀儀器必然要對微觀粒子產(chǎn)生干擾,這種干擾本身又對我們的認識產(chǎn)生了干擾;人只能用反映宏觀世界的經(jīng)典概念來描述宏觀儀器所觀測到的結(jié)果,可是這種經(jīng)典概念在描述微觀客體時又不能不加以限制。這突破了經(jīng)典科學(xué)完全可以在不影響客體自然存在的狀態(tài)下進行觀測的假定,從而建立了科學(xué)活動中主客體互動的關(guān)系。

例如,關(guān)于光到底是粒子還是波,辯論了三百多年。玻爾認為這完全取決于我們?nèi)绾稳ビ^察它。一種實驗安排,人們可以看到光的波現(xiàn)象;另一種實驗安排,人們又可以看到光的粒子現(xiàn)象。但就光子這個整體概念而言,它卻表現(xiàn)出波粒二象性。因此,海森伯就說,我們觀測的不是自然本身,而是由我們用來探索問題的方法所揭示的自然。[8]

量子力學(xué)的發(fā)展表明,不存在一個客觀的、絕對的世界。唯一存在的,就是我們能夠觀測到的世界。物理學(xué)的全部意義,不在于它能夠描述出自然“是什么”,而在于它能夠明確,關(guān)于自然我們能夠“說什么”。

[摘要]20世紀三次物理學(xué)革命之一的量子力學(xué)突破了經(jīng)典科學(xué)的機械決定論,使之轉(zhuǎn)化為非機械決定論;使得科學(xué)認識方法由還原論轉(zhuǎn)化為整體論;使得科學(xué)思維方式由追求簡單性到探索復(fù)雜性;確立了科學(xué)活動中主客體互動關(guān)系。

關(guān)鍵詞:量子力學(xué);經(jīng)典科學(xué)世界圖景;

參考文獻:

[1]林德宏.科學(xué)思想史[M].第2版.南京:江蘇科學(xué)技術(shù)出版社,2004:270-271.

[2]郭奕玲,沈慧君.物理學(xué)史[M].第2版.北京:清華大學(xué)出版社,1993:1-2.

[3]劉敏,董華.從經(jīng)典科學(xué)到系統(tǒng)科學(xué)[J].科學(xué)管理研究,2006,24(2):44-47.

[4]宋偉.因果性、決定論與科學(xué)規(guī)律[J].自然辯證法研究,1995,11(9):25-30.

[5]彭桓武.量子力學(xué)80壽誕[J].大學(xué)物理,2006,25(8):1-2.

[6]疏禮兵,姜巍.近現(xiàn)代科學(xué)觀的演進及其啟示[J].科學(xué)管理研究,2004,22(5):56-58.

第3篇

量子力學(xué)是當代科學(xué)發(fā)展中最成功、也是最神秘的理論之一。其成功之處在于,它以獨特的形式體系與特有的算法規(guī)則,對原子物理學(xué)、化學(xué)、固體物理學(xué)等學(xué)科中的許多物理效應(yīng)和物理現(xiàn)象作出了說明與預(yù)言,已經(jīng)成為科學(xué)家認識與描述微觀現(xiàn)象的一種普遍有效的概念與語言工具,同時也是日新月異的信息技術(shù)革命的理論基礎(chǔ);其神秘之處在于,與其形式體系的這種普遍應(yīng)用的有效性恰好相反,量子物理學(xué)家在表述、傳播和交流他們對量子理論的基本概念的意義的理解時,至今仍未達成共識。量子物理學(xué)家在理解和解釋量子力學(xué)的基本概念的過程中所存在的分歧,不是關(guān)于原子世界是否具有本體論地位的分歧,而是能否仍然像經(jīng)典物理學(xué)理論那樣,把量子理論理解成是對客觀存在的原子世界的正確描述之間的分歧。

在量子力學(xué)誕生的早期歲月里,這些分歧的產(chǎn)生主要源于對量子理論中的波函數(shù)的統(tǒng)計性質(zhì)的理解。因為量子力學(xué)的創(chuàng)始人把量子力學(xué)理解成是一種完備的理論,把量子統(tǒng)計理解成是不同于經(jīng)典統(tǒng)計的觀點,在根本意義上,帶來了量子力學(xué)描述中的統(tǒng)計決定性特征。而理論描述的統(tǒng)計決定性與物理學(xué)家長期信奉的因果決定論的實在論研究傳統(tǒng)相沖突。在當時的背景下,對于那些在經(jīng)典物理學(xué)的熏陶下成長起來的許多傳統(tǒng)物理學(xué)家而言,對量子力學(xué)的這種理解是難以容忍的。這些物理學(xué)家仍然堅持以經(jīng)典實在觀為前提,希望重建對原子對象的因果決定論的描述。這種觀點認為,現(xiàn)有的量子力學(xué)只是臨時的現(xiàn)象學(xué)的理論,是不完備的,將來總會被一個擁有確定值的能夠解決量子悖論的新理論所取代。量子哲學(xué)家普遍地把這種實在論稱之為定域?qū)嵲谡?,或者稱為非語境論的實在論。從EPR悖論到貝爾定理的提出正是沿著這一思路發(fā)展的。這種觀點把量子論中的統(tǒng)計決定論與經(jīng)典實在論之間的矛盾,理解成是量子論與傳統(tǒng)實在論之間的矛盾。

但是,自從1982年阿斯佩克特等到人完成的一系列實驗,沒有支持定域隱變量理論的預(yù)言,而是給出了與量子力學(xué)的預(yù)言相一致的實驗結(jié)果以來,量子論與傳統(tǒng)實在論之間的矛盾焦點,由對量子理論中的統(tǒng)計決定性特征的質(zhì)疑,轉(zhuǎn)向了對更加基本的量子測量過程中的“波包塌縮”現(xiàn)象的理解。因為量子測量問題是量子理論中最深層次的概念問題。馮諾意曼在本體論意義上引入量子態(tài)的概念來表征量子實在的作法,直接導(dǎo)致了至今難以解決的量子測量難題。到目前為止,所有的量子測量理論都是試圖站在傳統(tǒng)實在論的立場上,對量子測量過程作出新的解釋。玻姆的本體論解釋在承認量子力學(xué)的統(tǒng)計性特征,把量子世界看成是由客觀的不確定性、隨機性和量子糾纏所支配的世界的前提下,通過假設(shè)非定域的隱變量的存在,尋找對量子測量過程的因果性解釋。量子哲學(xué)家把這種實在論稱為非定域的實在論。[1] 多世界解釋在承認現(xiàn)有的量子力學(xué)的形式體系和基本特征是完全正確的前提下,通過多元本體論的假設(shè)來對具有整體性特征的量子測量過程作出整體論的解釋。量子哲學(xué)家把這種實在論稱為非分離的實在論。[1]

量子測量現(xiàn)象的非定域性和非分離性所反映的是量子測量過程的整體性特征。問題是,相對于科學(xué)哲學(xué)研究而言,如果把量子測量系統(tǒng)理解成是一個包括觀察者在內(nèi)的整體,我們將永遠不可能在觀察者與被觀察系統(tǒng)之間作出任何形式的分割。而觀察者與被觀察系統(tǒng)之間的分界線的消失,將會使我們在不考慮觀察者的情況下,對物理實在進行客觀描述的夢想徹底地破滅。這是因為,一方面,如果我們認為量子力學(xué)的形式體系是正確而完備的理論,那么,就能夠用量子力學(xué)的術(shù)語描述包括觀察者在內(nèi)的整個測量過程。這時,觀察者成為整個測量系統(tǒng)中的一個組成部分參與了測量中的相互作用;另一方面,如果我們?nèi)匀豢释褚钥煞蛛x性假設(shè)為基礎(chǔ)的經(jīng)典測量那樣,在以整體性假設(shè)為基礎(chǔ)的量子測量系統(tǒng)中,也能夠得到確定而純客觀的測量結(jié)果,那么,他們必須要在觀察者與被觀察的量子系統(tǒng)之間作出某種分割,觀察者才有可能站在整個測量系統(tǒng)之外進行觀察。然而,在量子測量的具體實踐中,這個重要的“阿基米德點”是永遠不可能得到的。因為對量子測量系統(tǒng)進行的任何一種形式的分割,都必然會導(dǎo)致像“薛定諤貓”那樣的悖論。這樣,關(guān)于量子論與實在論之間的矛盾事實上轉(zhuǎn)化為,在承認量子力學(xué)的統(tǒng)計性特征的前提下,如何解決量子測量的整體性與傳統(tǒng)實在論之間的矛盾。

以玻爾為代表的傳統(tǒng)量子物理學(xué)家在創(chuàng)立了量子力學(xué)的形式體系之后,并不追求從量子測量現(xiàn)象到量子本體論的超越中提供一種本體論的理解。而是在認識論和現(xiàn)象學(xué)的意義上做文章。玻爾認為,觀察的“客觀性”概念的含義,在原子物理學(xué)的領(lǐng)域內(nèi)已經(jīng)發(fā)生了語義上的變化。在這里,客觀性不再是指對客體在觀察之前的內(nèi)在特性的揭示,而是具有了“在主體間性的意義上是有效的”這一新的含義。這種把“客觀性”理解成是“主體間性”的觀點,在認識論意義上,所隱藏的直接后果是,使“客觀性”概念失去了與“主觀性”概念相對立的基本含義,從而使量子力學(xué)成為支持科學(xué)的反實在論解釋的一個重要的立論依據(jù)。與此相反,近幾十年發(fā)展起來的多世界解釋,試圖以多元本體論的假設(shè)為前提,恢復(fù)對客觀性概念的傳統(tǒng)理解;玻姆的本體論解釋則是以粒子軌道與真實波的二元論假設(shè)為代價,把測量過程中的整體性特征歸結(jié)為是量子勢的性質(zhì)。這兩種解釋雖然在理解量子測量現(xiàn)象時堅持了傳統(tǒng)實在論的立場。但是,這些立場的堅持是以在量子力學(xué)中增加某些額外的假設(shè)為代價的。這正是為什么近幾十年來,反思與研究量子力學(xué)與量子測量的概念基礎(chǔ)問題,成為不計其數(shù)的論著和論文所討論的中心論題的主要原因所在。

到目前為止,在量子物理學(xué)家的心目中,微觀客體的非定域性特征和量子測量的非分離性特征已經(jīng)成為不爭的事實。如果我們站在科學(xué)哲學(xué)的立場上,像當初接受量子統(tǒng)計性一樣,也接受量子力學(xué)描述的微觀系統(tǒng)的這種整體性特征。那么,量子測量過程中被測量的系統(tǒng)與測量儀器(包括觀察者在內(nèi))之間的整體性關(guān)系將會意味著,在微觀領(lǐng)域內(nèi),我們所得到的知識,事實上,總是與觀察者密切相關(guān)的知識。這個結(jié)論顯然與長期以來我們所堅持的真理符合論的客觀標準不相容。因此,接受量子力學(xué)的整體性特征,就意味著放棄真理符合論的標準,需要對傳統(tǒng)實在論的核心概念——理論和真理的性質(zhì)與意義——進行重新理解。這樣,現(xiàn)在的問題就變成是,能否在接受量子力學(xué)的統(tǒng)計性和整體性特征的前提下,闡述一種新的實在論觀點呢?如果答案是否定的,那么,科學(xué)實在論將永遠不可能得到辯護;如果答案是肯定的,那么,與理論的整體性特征相協(xié)調(diào)的實在論是一種什么樣的實在論呢?這正是本文所關(guān)注的主要問題所在。

2.認識論教益:隱喻思考與模型化方法的突現(xiàn)

自近代自然科學(xué)產(chǎn)生以來,公認的傳統(tǒng)實在論的觀點是建立在宏觀科學(xué)知識基礎(chǔ)之上的一種鏡像實在論。在宏觀科學(xué)的研究領(lǐng)域內(nèi),觀察者總是能夠站在整個測量系統(tǒng)之外,客觀地獲得測量信息。在有效的測量過程中,測量儀器對測量結(jié)果的干擾通??梢院雎圆挥?。測量結(jié)果為理論命題的真假提供了直接的評判標準,使命題和概念擁有字面表達的意義(literal meaning)或非隱喻的意義和指稱。因此,鏡像實在論是以觀察命題的真理符合論為前提的。

真理符合論的最實質(zhì)性的內(nèi)容是,堅持命題與概念同實際的事實相符合。長期以來,科學(xué)家一直把這種觀點視為是科學(xué)研究活動的價值基礎(chǔ)。

維特根斯坦在其著名的《邏輯哲學(xué)導(dǎo)論》一書中,把真理的這種符合論觀點表述為:就像唱片是聲音的畫像并具有聲音的某些結(jié)構(gòu)一樣,命題所描述是事實的畫像,并具有與事實一致的結(jié)構(gòu)。因為用語言來思考和說話,就是用語言來對事實作邏輯的模寫,它類似于畫家用線條、色彩、圖案來描繪世界上的事物。所以,用語言描述的圖象與世界的實際圖象之間具有同構(gòu)性。1933年,塔爾斯基對這種真理觀進行了定義。在當前科學(xué)哲學(xué)的文獻中,人們習(xí)慣于用“雪是白的”這一命題為例,把塔爾斯基對真理的定義形象地表述為:“雪是白的”是真的,當且僅當,雪是白的。

普特南把塔爾斯基對真理的這種定義概括為“去掉引號的真理論”。塔爾斯基認為,要想使“‘雪是白的’是真的”,這個句子本身成真,當且僅當,“雪是白的”這個事實是真實的,即我們能夠得到“雪是白的”這一經(jīng)驗事實。這個看似簡單的句子隱含著兩層與常識相一致的符合關(guān)系:第一層的相符合關(guān)系是,語言表達的命題與實際事實相符合;第二層的相符合關(guān)系是,觀察得到的事實與真實世界相符合。在日常生活中,像“雪是白的”這樣的經(jīng)驗事實是非常直觀的,只要是一個正常的人,都有可能看到“雪確實是白色的”這個實際存在的事實。因此,人們對它的客觀性不會產(chǎn)生任何懷疑,能夠作為“‘雪是白的’是真的”這個句子的成真條件。

然而,量子力學(xué)揭示出的微觀測量系統(tǒng)中的整體性特征,既限制了我們對這種理想知識的追求,也向傳統(tǒng)的客觀真理標準的價值觀提出了挑戰(zhàn)。這是因為,在量子測量的過程中,對命題的這種理想的描述方式和對對象的如此單純的觀察活動,已經(jīng)不再可能。以玻爾為代表的許多物理學(xué)家雖然在量子力學(xué)誕生的早期就已經(jīng)意識到這一點。但是,在科學(xué)哲學(xué)的意義上,他們在拋棄了真理符合論之后,卻走向了認識論的反實在論;馮諾意曼的測量理論以真理符合論為基礎(chǔ),要求在觀察者與測量儀器之間進行分割的做法,直接導(dǎo)致了量子測量中的“觀察者悖論”;現(xiàn)存的非分離與非定域的實在論解釋,也是以真理符合論為基礎(chǔ),在量子力學(xué)的形式體系中增加了某些難以令人接受的額外假設(shè),來解決量子測量難題。從哲學(xué)意義上看,這種借助于額外假設(shè)來使量子力學(xué)與實在論相一致的作法并沒有唯一性。它不過是借助于各種哲學(xué)的想象力來解決量子測量難題而已。

由此可見,量子測量難題的產(chǎn)生,實際上是以真理符合論為基礎(chǔ)的傳統(tǒng)實在論的觀點,來理解量子測量過程的整體性特征所導(dǎo)致的?,F(xiàn)在,如果我們像放棄經(jīng)典的絕對時空觀,接受相對論一樣,也放棄真理符合論的實在論,接受現(xiàn)有的量子力學(xué)。那么,在當代科學(xué)哲學(xué)的研究中,我們需要以成功的量子力學(xué)帶給我們的認識論教益為出發(fā)點,對理論、概念和真理的性質(zhì)與意義作出新的闡述。量子力學(xué)所揭示的微觀世界與宏觀世界之間的最大差異在于,我們對微觀世界的內(nèi)在結(jié)構(gòu)的認知,不可能像對宏觀世界的認知那樣,使觀察者能夠站在整個測量語境的外面來進行。

這就像盲人摸象的故事一樣,不同的盲人從大象的不同部位開始摸起,最初,他們所得到的對大象的認識是不相同的,因為每個人根據(jù)自己的觸摸活動都只能說出大象的某一個部分。只有當他們摸完了整個大象時,他們才有可能對大象的形狀作出客觀的描述。然而,雖然他們對大象的描述始終是從自己的視角為起點的,并建立在個人理解的基礎(chǔ)之上。但是,不可否認的是,他們的觸摸活動總是以真實的大象為本體的。在微觀領(lǐng)域內(nèi),量子世界如同是一頭大象,物理學(xué)家如同是一群盲人,有所區(qū)別的是,物理學(xué)家對微觀世界的認識不可能是直接的觸摸活動,而只能借助于自己設(shè)計的測量儀器與對象進行相互作用來進行。在這個相互作用的過程中,包括觀察者在內(nèi)的測量語境成為聯(lián)系微觀世界與理論描述之間的一個不可分割的紐帶。

如果把這種量子力學(xué)的這種整體性思想延伸外推到一般的科學(xué)哲學(xué)研究中,那么,可以認為,科學(xué)家所闡述的理論事實上是一個產(chǎn)生信念的系統(tǒng)。科學(xué)家借助于模型化的理論,把他們對世界的認知模擬出來。理論模型所描述出的世界與真實世界之間的關(guān)系是一種內(nèi)在的、整體性的相似關(guān)系。這種相似分為兩個不同的層次:其一,在特定的語境中,模型與被模擬的世界在現(xiàn)象學(xué)意義上的初級相似。這種相似是指,在這個層次上,我們只是能夠通過某些關(guān)系把現(xiàn)象描述出來,但是,對現(xiàn)象之所以發(fā)生的原因給不出明確的說明;其二,在特定的語境中,模型與被模擬的世界在認識論意義上的高級相似。這種相似是指,理論模型達到了與真實世界的內(nèi)在結(jié)構(gòu)與關(guān)系之間的相似。所以,現(xiàn)象學(xué)意義上的相似最后會被成熟理論所描述的認識論意義上的結(jié)構(gòu)相似所包容或修正。

這兩個層次之間的相似關(guān)系是建立在經(jīng)驗基礎(chǔ)之上的,而不是建立在邏輯或先驗的基礎(chǔ)之上。這樣,雖然科學(xué)家在建構(gòu)理論模型的過程中,總是不可避免地存在著許多非理性的因素。但是,在根本的意義上,他們的建構(gòu)活動是以最終達到使理論描述的可能世界與真實世界之間的結(jié)構(gòu)與關(guān)系相似為目的的。因此,測量語境的存在成為科學(xué)家建構(gòu)活動的一個最基本的制約前提。建構(gòu)理論模型的活動是一種對世界的認知活動。建構(gòu)活動中的虛構(gòu)性將會在與公認的實驗事實的比較中不斷地得到矯正,直至達到與真實世界完全一致為止?;蛘哒f,在一定的語境中,當從理論模型作出的預(yù)言在經(jīng)驗意義上不斷地得到了證實的時候,類比的相似性程度將隨之不斷地得以提高;當科學(xué)共同體能夠依據(jù)理論模型所描述的可能世界的結(jié)構(gòu)來理解真實世界時,相似性關(guān)系將逐漸地趨向模型與世界之間的一致性關(guān)系。

在這種理解方式中,真理是物理模型與真實世界之間的相似關(guān)系的一種極限,是在一定的語境中完善與發(fā)展理論的一個最終結(jié)果。這樣,在科學(xué)研究中,真理成為科學(xué)研究追求的一個最終目標,而不是科學(xué)研究的邏輯起點?;蛘哒f,把真理理解成是在科學(xué)的探索過程中,成熟的物理模型與世界結(jié)構(gòu)之間達成的一致性關(guān)系。對真理的這種理解,使過去追求的客觀真理變成了與語境密切相關(guān)的一個概念。超出理論成真的語境范圍,真理也就失去了存在的前提和價值。這樣,與玻爾把理論的客觀性理解成是主體間性的觀點所不同,本文是通過改變對真理意義的理解方式,挽救了理論的客觀性。

如果把科學(xué)活動理解成是對世界的模擬活動,那么,在理論的建構(gòu)活動中,科學(xué)理論的概念與術(shù)語所描述出的可能世界,只在一定的語境中與真實世界具有相似性。所以,相對于不可能被觀察到的真實世界而言,科學(xué)的話語(scientific discourses)將不再具有按字面所理解的意義,而是只具有隱喻的意義。只有當理論與世界之間的關(guān)系趨向于一致性關(guān)系時,對某些概念的隱喻性理解才有可能變成字面語言的理解。所以,在科學(xué)研究的活動中,研究對象越遠離日常經(jīng)驗,科學(xué)話語中的隱喻成份就越多。這也許是為什么在量子理論產(chǎn)生的早期年代,物理學(xué)家在理解微觀現(xiàn)象時,不可能在微觀對象的粒子性和波動性之間作出任何選擇的原因所在。實際上,微觀粒子的波——粒二象性概念只是在現(xiàn)象學(xué)意義上的一種典型的隱喻概念,它們并不擁有概念的字面意義,而只具有隱喻的意義。因此,它們不是對真實世界的基本結(jié)構(gòu)的實際描述。正如惠勒的“延遲實驗”所揭示的那樣,物理學(xué)家不可能選擇用其中的一類圖象來解釋另一類圖象。只有當關(guān)于微觀世界的內(nèi)在結(jié)構(gòu)在可能世界的模型中得到全部模擬時,原來的波——粒二象性的概念才被一個更具有普遍意義的新的量子態(tài)概念所取代。

如果科學(xué)語言只具有隱喻的意義,科學(xué)理論所描述的是可能世界,那么,物理學(xué)家對測量現(xiàn)象的描述,也只是一種隱喻描述,而不是非隱喻的按照字義所理解的描述。這種描述既依賴于觀察者的背景知識,也依賴于當時的技術(shù)發(fā)展的水平。就像格式塔心理學(xué)所闡述的那樣,同樣的圖形、同一個對象,不同的觀察者會得出不同的結(jié)論。在這個意義上,測量與觀察不再是純粹地揭示對象屬性的一種再現(xiàn)活動,而是觀察者與對象發(fā)生相互作用之后,受到測量語境約束的一種生成活動。在這個活動中,就現(xiàn)象本身而言,至少包含有兩類信息:一是來自對象自身的信息;二是包括觀察者在內(nèi)的測量系統(tǒng)內(nèi)部發(fā)生相互作用時新生成的信息。

從這個意義上看,微觀粒子在測量過程中表現(xiàn)出的波——粒二象性只是一種現(xiàn)象學(xué)意義上的相似,而不是微觀粒子的真實存在。在大多數(shù)情況下,現(xiàn)象還不等于是證據(jù),把現(xiàn)象作為一種證據(jù)表述出來,還要受到物理學(xué)家的背景知識和社會條件的制約,甚至受到已接受的可能世界的基本理念的制約。按照對理論、真理和測量的這種理解方式,由“波包塌縮”現(xiàn)象所反映的問題,就變成了提醒物理學(xué)家有必要對過去所忽視的物理測量過程的各個細節(jié),對宏觀與微觀之間的過渡環(huán)節(jié),進行更細致的理論研究的一個信號,成為進一步推動物理學(xué)發(fā)展的一個技術(shù)性的物理學(xué)問題,而不再是觀念性的與實在論相矛盾的哲學(xué)問題。

玻姆的量子論是試圖用非隱喻的字面語言對真實的量子世界進行描述,而現(xiàn)有的量子力學(xué)在它的產(chǎn)生初期則是用隱喻的語言對量子世界的一種模擬描述。正是由于理論模型具有的相似性,才使得薛定諤的波動力學(xué)與海森堡等人的矩陣力學(xué)能夠得出完全相同的結(jié)果,并最終證明兩者在數(shù)學(xué)上是等價的。在量子力學(xué)的語境中,不論是波動圖象,還是粒子圖象都只是理論與世界之間的現(xiàn)象學(xué)意義上的初級相似。在以后的發(fā)展中,量子力學(xué)所描述的可能世界的預(yù)言與真實世界的實驗現(xiàn)象相一致的事實說明,當馮諾意曼在希爾伯特空間以量子態(tài)為基本概念建立了量子力學(xué)的公理化體系之后,這些現(xiàn)象學(xué)意義上的相似已經(jīng)上升到認識論意義上的結(jié)構(gòu)相似,說明量子力學(xué)描述的可能世界與真實世界在微觀領(lǐng)域內(nèi)是一致的。這時,以波——粒二象性為基礎(chǔ)的隱喻圖象被整體論的世界圖象所取代。這也許正是物理學(xué)家可以在拋開哲學(xué)爭論的前提下,只注重量子物理學(xué)的技術(shù)性發(fā)展的一個原因所在。而相比之下,玻姆的理論不過是追求傳統(tǒng)意義上的非隱喻的字面圖象和傳統(tǒng)哲學(xué)觀念的一種理想產(chǎn)物。

在對理論、概念和真理的意義的這種理解方式中,理論與世界之間的一致性關(guān)系不是建立在命題與概念的層次上,而是以測量語境為本體,建立在物理模型與真實世界之間從現(xiàn)象學(xué)意義上的初級相似到認識論意義上的結(jié)構(gòu)相似的基礎(chǔ)之上的。測量語境的本體性,成為我們在認識論意義上承認科學(xué)理論是一個信念系統(tǒng)的同時,拒絕后現(xiàn)代主義者把理論理解成是可以隨意解讀的社會文本的極端觀點的根本保證。所以,真理的意義不是取決于詞、概念和命題與世界之間的直接符合,而是在于理論整體與世界整體之間在逼真意義上的一致性。由于可能世界與真實世界之間的這種一致性關(guān)系在一定程度上是依賴于社會技術(shù)條件的動態(tài)關(guān)系。因此,以一致性為基礎(chǔ)的真理是依賴于語境的真理,它永遠是一個動態(tài)的和可變的概念,而不是靜止的和不變的概念。這顯然是對“把科學(xué)研究的目的理解為是追求真理”這句話的最好解答。

3.從思維方式的變革到語境實在論的基本原理

當我們把對理論、真理和意義的這種理解方式應(yīng)用于對真實世界的認識時,也可以在測量語境的基礎(chǔ)上,對理論進行實在論的解釋。所不同的是,這種實在論不再是把科學(xué)理論理解成是提供關(guān)于世界的某種鏡象圖景的、以強調(diào)語言與命題的真理符合論為基礎(chǔ)的那種實在論,而是把科學(xué)理論理解成是通過先對世界的模擬,然后,與真實世界趨于一致的、依賴于測量語境的實在論。不同的理論模型和測量語境可以提供對世界的不同描述。但是,通過進一步的觀察或?qū)嶒?,我們可以判斷哪一個模型能夠更好地與世界相一致。在這里,理論模型與世界之間的關(guān)系是一種相似關(guān)系,而不再是相符合的關(guān)系;測量結(jié)果與對象之間的關(guān)系是在特定條件下的一種境遇性關(guān)系,而不再是一種純粹的再現(xiàn)關(guān)系。我們把這種與量子力學(xué)的整體性特征相一致的量子實在論稱為“語境實在論”。用語境實在論的觀點取代傳統(tǒng)實在論的觀點,必然帶來思維方式的根本轉(zhuǎn)變。需要以整體性的語境論的思維觀取代傳統(tǒng)思維觀。這種思維方式的逆轉(zhuǎn)主要通過下列幾個方面體現(xiàn)出來:

首先,在本體論意義上,用普遍的本體論的關(guān)系論(global-ontological relationalism)的觀點取代傳統(tǒng)的本體論的原子論(ontological atomism)的觀點。承認關(guān)系屬性或傾向性屬性的存在,承認概率的實在性,承認世界中的實體、屬性與關(guān)系之間的整體性。傳統(tǒng)的原子本體論總是把世界理解成是由可以進行任意分割的部分所組成,整體等于部分之和,牛頓力學(xué)是這種本體論的一個典型范例;關(guān)系本體論則把世界理解成是一個不可分割的整體,整體大于部分之和,量子力學(xué)是這種本體論的一個典型范例。與原子本體論中認為實體可以獨立地擁有自身的屬性所不同,在關(guān)系本體論中,實體及其屬性總是在一定的關(guān)系中體現(xiàn)出來。這里存在著兩層關(guān)系:一層是實體之間的內(nèi)在關(guān)系屬性;另一層是實體固有屬性表現(xiàn)的外在關(guān)系條件。前者具有潛存性,后者為潛存性向現(xiàn)實性的轉(zhuǎn)變創(chuàng)造了有利條件。 其次,在認識論意義上,用理論模型的隱喻論的觀點取論模型的鏡象論的觀點。傳統(tǒng)的模型鏡象論觀點把理論理解成是命題的集合,命題與概念的指稱和意義是由對象決定的,它們的集合構(gòu)成了對對象的完備描述;而模型隱喻論的觀點雖然也認為理論能夠以命題的形式表示出來,但是,理論不是命題的集合,而是包含有模仿世界的內(nèi)在機理的模型集合。理論與世界之間的關(guān)系不是傳統(tǒng)的相符合關(guān)系,而是在一定的語境中,理論描述的可能世界與真實世界之間以相似為基礎(chǔ)的一致性關(guān)系。理論系統(tǒng)的模型與真實系統(tǒng)之間的相似程度決定理論的逼真性。這樣,真理不再是命題與世界之間的符合,而是成為理論的逼真性的一種極限情況?;蛘哒f,當理論所描述的可能世界與真實世界相一致的時候,理論的真理才能出現(xiàn)。這是對基本的認識論概念的倒轉(zhuǎn):傳統(tǒng)的逼真性理論是用命題或命題集合的真理作為基本單元,來衡量理論距真理的距離,即理論的逼真度;而現(xiàn)在正好反過來,是通過對逼真性概念的理解來達到對真理的理解。

第三,在方法論意義上,用語義學(xué)方法取代傳統(tǒng)的認識論方法。在傳統(tǒng)的認識論方法中,是用命題的真理或圖象與世界之間的逼真度的術(shù)語來表達科學(xué)實在論的一般論點。然而,這種方法使我們從開始就需要清楚地辨別對一些解釋性描述的理解。例如,在相同的研究領(lǐng)域內(nèi),我們?yōu)槭裁茨軌蛘f,一個理論比與它相競爭的另一個理論更逼近真理或更遠離真理?對于諸如此類的問題,如果沒有一個明確的和可辯護的回答方式,那么,逼真性概念要么是空洞的;要么就是不一致的。結(jié)果,對理論的逼真性的論證反而成為對“認識的謬誤(epistemic fallacy)”的證明,并在某程度上支持了認識論的懷疑論觀點。但是,如果我們在語義學(xué)的語境中,通過對逼真性概念的分析與辯護,然后,衍生出理論的真理,對上述問題的理解方式將不會陷入如此的認識論困境。并且從認識論的懷疑論也不會推論出語義學(xué)的懷疑論。

第四,在經(jīng)驗的意義上,用現(xiàn)象生成論的測量觀取代現(xiàn)象再現(xiàn)論的測量觀。所謂現(xiàn)象再現(xiàn)論的測量觀是指,把物理測量結(jié)果理解成是對對象固有屬性的一種再現(xiàn),測量儀器的使用不會對對象屬性的揭示產(chǎn)生實質(zhì)性的干擾,它扮演著一個單純意義上的工具角色。理論術(shù)語能夠?qū)@些觀察證據(jù)進行精確的表述。觀察證據(jù)的這種純粹客觀性成為建構(gòu)與判別理論的邏輯起點;而現(xiàn)象生成論的測量觀則認為,測量是對世界的一種透視,測量結(jié)果是在對象與測量環(huán)境相互作用的過程中生成的。測量結(jié)果所表達的經(jīng)驗事實,不是純粹對世界狀態(tài)的反映,因為經(jīng)驗事實存在于我們的信念系統(tǒng)之中,而不是獨立于觀察者的意識或論述之外與世界的純粹符合,只是在特定的測量語境中的一種相對表現(xiàn),是相互作用的結(jié)果。或者說,測量語境構(gòu)成了對象屬性有可能被認識的必要條件。

所以,理論的逼真度與科學(xué)進步之間的聯(lián)系,應(yīng)該在經(jīng)驗的意義上來確立。科學(xué)進步的記錄并不是真命題的積累,而是從模型系統(tǒng)與真實系統(tǒng)之間的相似性出發(fā),用逼真度的概念衡量科學(xué)研究綱領(lǐng)接近真理的程度。在這里,相似性不是一個命題,也不是兩個世界之間的一種固定不變的關(guān)系,而是依賴于語境的一個程度性的概念。它的內(nèi)容將會隨著我們對世界的不斷深入的理解而發(fā)生變化。所以,科學(xué)進步不是真命題積累的問題,而是理論的成功預(yù)言與經(jīng)驗事實的函數(shù)。

第五,在語義學(xué)的意義上,用整體論或依賴于語境的隱喻語言范式取代非隱喻的字面真理范式(literal-truth paradigm)。從17世紀開始,非隱喻的字面真理的范式就已經(jīng)被科學(xué)家廣泛地接受為是理想的語言。其動機是期望把理論模型的言語和論證,建立在優(yōu)美而簡潔的數(shù)學(xué)和幾何的基礎(chǔ)之上。當時的理性論者和經(jīng)驗論者把科學(xué)語言當成是理想的合乎理性的語言,或者說,把科學(xué)的經(jīng)驗和知識看成是人類經(jīng)驗和知識的典范。這種觀點認為,所有的知識與真實世界之間的關(guān)系是根據(jù)表征知識的命題方式來討論的,科學(xué)語言與概念的意義由它所表征的世界來確定,它們不僅在本質(zhì)上具有固有的字義,而且語言本身的字面意義就是使用詞語的標準。語言的意義不僅與語言的用法無關(guān),而被認為是客觀地對應(yīng)于世界的各個方面??茖W(xué)的話語總是關(guān)于自然界的現(xiàn)象、內(nèi)在結(jié)構(gòu)和原因的話語。

然而,在整體論的隱喻語言范式中,理論所討論的是由科學(xué)共同體提出的關(guān)于世界的因果結(jié)構(gòu)的信念,知識與真實世界之間的關(guān)系是根據(jù)可能世界與真實世界之間的相似關(guān)系來討論的。在這里,兩個世界之間的相似程度的提高是它們共有屬性的函數(shù)。在隱喻的意義上,語言與概念的意義是極其模糊的和語境化的,隱喻的表達通常并不直接對應(yīng)于世界中的實體或事件:即,按照字面的意義理解隱喻的陳述常常是錯誤的。例如,在理解量子測量現(xiàn)象時,實驗已經(jīng)證明,或者強調(diào)使用粒子語言,或者強調(diào)波動語言都是失敗的。這也是玻爾的互補性原理在量子力學(xué)的時期歲月里容易被人們所接受的高明之處。從本文的觀點來看,關(guān)于微觀世界的粒子圖象或波動圖象只不過是傳統(tǒng)思維慣性的一種最顯著的表現(xiàn)而已。事實上,這兩種圖象都只是一種隱喻意義上的圖象,而不代表微觀世界的真實圖象。隱喻與其它非字面的言詞是依賴于語境的。正如后期維特根斯所言,語言與概念的意義依賴于活動,使用一個符號的充分必要條件必須包括對活動的描述。

在這種整體論的思維方式的基礎(chǔ)上,我們可以把語境實在論的主要觀點,總結(jié)為下列六個基本原理:

本體論原理:在物理測量的過程中,物理學(xué)家所觀察到的現(xiàn)象是由不可能被直接觀察到的過程因果性地引起的。這些不可能被直接觀察到的過程是獨立于人心而自在自為地存在著的。

方法論原理:對一個真實過程的理論模型的建構(gòu),是對不可能被觀察到的真實世界的機理和結(jié)構(gòu)的模擬。對于真實世界而言,它在現(xiàn)象學(xué)意義上的表現(xiàn)與它的內(nèi)在結(jié)構(gòu)或機理在定性的意義上具有一致性。即,理論模型具有經(jīng)驗的適當性。

認識論原理:理論描述的可能世界與真實世界只具有的相似性,它們之間的相似程度是它們具有的共同特性的函數(shù)。這些共性是在實驗與測量語境中找到的。

語義學(xué)原理:在一定的語境中,理論模型與真實系統(tǒng)之間的相似關(guān)系決定理論的逼真性。在理想的情況下,真理是理論描述的可能世界逼近真實世界的一種極限。

價值論原理:科學(xué)理論的建構(gòu)在最終意義上總要受到實驗證據(jù)的制約,科學(xué)理論的發(fā)展總是向著越來越接近真實世界機理的方向發(fā)展的。

倫理學(xué)原理:包括人類在內(nèi)的自然界具有不可分割的整體性,關(guān)于人類行為的評價標準應(yīng)該建立在人與自然的整體性關(guān)系上。

4.科學(xué)進步的語境生成論模式

探討科學(xué)進步的模式問題一直是科學(xué)哲學(xué)研究中的重大理論問題之一。不同的學(xué)派提出了不同的觀點。邏輯實證主義者繼承了自培根以來的哲學(xué)傳統(tǒng),認為科學(xué)的發(fā)展在于對經(jīng)驗證實的真命題的積累。理論所包括的真命題越多,它就越逼近真理。波普爾把理論逼近真理的這種性質(zhì)稱為“逼真性”,逼真性的程度稱為“逼真度”。他認為,理論是真內(nèi)容與假內(nèi)容的統(tǒng)一,理論的逼真度等于理論中的真內(nèi)容與假內(nèi)容之差。而真內(nèi)容由理論中那些得到經(jīng)驗確認的真命題所組成。真命題越多,理論的逼真度就越高。在所有這些觀點中,逼真性的主要特性是用命題與事實的符合作為近似真理的基本單元。換言之,是用命題真理的術(shù)語來理解理論的逼真性。在這里“符合”沒有程度上的差別;逼真性與真理之間的關(guān)系是部分與整體之間的關(guān)系。這種“符合”或“與事實相符”包含著四個方面的關(guān)系:其一,句子的主語與謂詞之間處于相互聯(lián)系的狀態(tài);其二,事態(tài)(the state of affairs)與主語之間的指稱關(guān)系;其三,謂詞表達與被選擇的事態(tài)之間的指稱關(guān)系;其四,說話者所選擇的對象與事態(tài)之間的相適合關(guān)系。[1]

然而,這種以真命題的多少來衡量理論的逼真度的方法,似乎沒有辦法回答諸如下面的那些問題:如果一個理論最后被證明是與事實不相符,那么,這個理論怎么可能接近真理呢?比如說,在當前的情況下,量子場論還是一個不成熟的理論,它在未來一定會被加以修改,那么,我們能夠說,量子場論不如牛頓力學(xué)與事實更相符嗎?此外,“符合事實”這個概念也會遇到同樣的問題:如果某個理論根本就是錯誤的,我們又怎能說,它與事實符合的更好或更糟呢?也許有些在表面上曾經(jīng)顯示出具有某種逼真性的理論,實際上,它卻在根本意義上就是錯的。例如,化學(xué)中的“燃素說”、物理學(xué)中的“地心說”,等等,這些理論都曾經(jīng)在科學(xué)家的實際工作中,起到過積極的作用。但是,后來的發(fā)展證明,它們都是錯誤的假說。另一方面,這種方法還無法解釋為什么在前后相繼的理論中使用的同一個概念,卻具有不同的內(nèi)涵這樣的問題。例如,經(jīng)典物理學(xué)中的質(zhì)量概念不同于相對論力學(xué)中的質(zhì)量概念;量子力學(xué)的中微觀粒子概念也比經(jīng)典物理學(xué)中的粒子概念擁有更豐富的內(nèi)涵。庫恩在闡述他的科學(xué)進步的范式論模式時,為了避免上述問題的出現(xiàn),走向了徹底的相對主義。

如果我們用強調(diào)理論描述的物理模型與世界之間的相似性比較,取論中包含的真命題的比較來理解理論的逼真性,那么,上述問題就很容易得到解決。在特定的語境中,并存著的相互競爭的理論,分別描繪出幾個相互競爭的可能世界,這些可能世界與真實世界之間的相似程度決定理論的逼真性。逼真度越高的理論,將會越客觀、越接近于真理。真理是理論的逼真度等于1時的一種極限情況。例如,牛頓力學(xué)比伽里略的力學(xué)更接近真理的真正理由是,因為牛頓物理學(xué)所描繪的世界模型比伽里略物理學(xué)所描繪的世界模型與真實世界更相似。而不應(yīng)該把這個結(jié)論替換成是,在每一個方法中通過真命題的計數(shù)來使它們與精確地說明真實世界的真命題的總數(shù)進行比較后作出的選擇。前后相繼的理論中所使用的共同概念的意義也是依賴于可能世界的。不同層次的可能世界雖然賦予同一個概念以不同的內(nèi)涵。但是,由于更深層的可能世界更接近真實世界的內(nèi)在結(jié)構(gòu),所以,對為什么同一個概念會有不同內(nèi)涵的問題就容易理解了。

我們把由理論描繪的可能世界逼近真實世界的過程,以及前后相繼的理論之間的更替關(guān)系總結(jié)為:

前語境階段——語境確立階段——語境擴張階段——語境轉(zhuǎn)換階段

——新的語境確立階段……

在科學(xué)進步的這個模式中,前語境階段是指,當科學(xué)進入一個新的研究領(lǐng)域時,面對不可能被舊理論所解釋的有限數(shù)量的實驗證據(jù)和存在的重要問題,科學(xué)家首先是進行大膽的創(chuàng)新和積極地猜測,提出可能與證據(jù)相一致的相互競爭的理論或假說。這些理論或假說分別描繪出了相互競爭的各種可能世界的圖象。這個時期,科學(xué)家在建構(gòu)理論時,通過模型與現(xiàn)象的比較來約束他們的想象。或者說,他們的富有創(chuàng)造性的想象力是一種意向性的想象,而不是完全隨意的想象。這種意向性的信息直接來自不可能被直接觀察到的對象本身??茖W(xué)家在相互競爭的理論中作出選擇時,依賴于兩個主要的歸納根據(jù):其一,相信任何一個理論模型的建構(gòu)都是為了盡可能準確地模擬真實世界的結(jié)構(gòu)和機理;其二,依據(jù)模型所產(chǎn)生的信念能夠作為成為設(shè)計新的實驗方案的基礎(chǔ),這個實驗方案的設(shè)計是為了探索世界,和檢驗?zāi)P团c它所表征的世界之間的類似程度。在特定領(lǐng)域內(nèi)和一定的歷史條件下,根據(jù)一個理論的信念所設(shè)計的實驗越新穎,在得到應(yīng)用之后,越能夠證明理論的成功性。同時,理論的調(diào)整總是向著與新的實驗結(jié)果相一致的方向進行的。而新的實驗結(jié)果是由自然界中某種未知的因果機理引起的。

然而,說明的成功(explanatory success)只是理論逼近真理的一個象征或一個結(jié)果,或者說,說明的成功只是理論逼近真理的一個必要條件。凡是逼真的理論都必定能夠?qū)嶒灛F(xiàn)象作出成功的說明。但是,并不是每一個擁有成功說明的理論都是逼真的理論。在理論的說明中,理論的逼真性與不斷增加的成功之間的聯(lián)系應(yīng)該是一個認識論問題,而不是一個語義學(xué)問題。一個完整的科學(xué)理論從產(chǎn)生到成熟通常要經(jīng)過三個階段:其一,對現(xiàn)象的描述階段,這個階段得到了在經(jīng)驗上恰當?shù)哪P汀@?,在量子力學(xué)之前,玻爾等人提出的各種原子模型;第二個階段是建立一個理論的說明模型。例如,現(xiàn)有的量子力學(xué)的數(shù)學(xué)形式體系。第三個階段是為成功的說明模型尋找一種可理解的機理,或者說,對說明模型提供語義學(xué)的基礎(chǔ)。相對于一個成熟的科學(xué)理論而言,現(xiàn)象——模型——機理三者之間的相互關(guān)系具有內(nèi)在的不可分割的整體性。這也就是為什么原子物理學(xué)家在理解量子力學(xué)的內(nèi)在機理的問題上沒有達成共識時,產(chǎn)生了量子力學(xué)的解釋問題的原因所在。

在這里,我們所說的模型是指物理模型而不是僅僅指數(shù)學(xué)模型。物理模型除了包括數(shù)學(xué)模型之外,還包括理解世界的構(gòu)成機理的模型。物理模型是為數(shù)學(xué)模型提供一個語義學(xué)基礎(chǔ)。例如,分子運動論模型是解釋壓強公式的語義學(xué)基礎(chǔ);場的觀點是理解引力理論的語義學(xué)基礎(chǔ)。所以,物理學(xué)中的模型是指真實物理系統(tǒng)的替代物,它既具有解釋的作用,也能夠把抽象的數(shù)學(xué)系統(tǒng)翻譯為一個可理解的論述。正是在這個意義上,物理學(xué)模型是指一個模型簇。由這些模型簇所描繪的可能世界的結(jié)構(gòu)與真實世界的結(jié)構(gòu)之間的相似關(guān)系,在選擇理論時是很重要的。一方面,它能夠使理論在科學(xué)實踐中被不斷地修改和擴展以適應(yīng)新的現(xiàn)象,而不是靜止的和孤立的;另一方面,它使相互競爭的理論之間的選擇在科學(xué)實踐的規(guī)則與活動之內(nèi)自然地得到了求解。這時,被淘汰掉的理論并非必須要被證偽(盡管證偽也是因素之一),而是如同生物進化那樣是自然選擇的結(jié)果。

在這里,把逼真度作為選擇理論的標準,與要么強調(diào)經(jīng)驗證實,要么強調(diào)經(jīng)驗證偽的標準不同,它永遠是動態(tài)的和依賴于研究語境的概念。它既有助于把淘汰掉的理論中的某些合理化因素進行再語境化,也能夠確保科學(xué)描述和與此相關(guān)的實驗技巧與獨立于人心的世界之間建立起一種物理聯(lián)結(jié),從而堅持了存在著一個不可能被觀察到的獨立于人心的世界的本體論的實在論觀點。大體上,衡量可能世界與真實世界之間的結(jié)構(gòu)或機理的相似程度可以通過它們之間的共有屬性(或共同特征)來進行。如果用S(A ,B)表示兩個世界之間的基本特征的相似關(guān)系,用 A∩B表示共有屬性,A – B和 B - A表示它們之間的差異,那么,在定性的意義上,這些量之間的關(guān)系可以定性地表示為:[1]

S(A ,B)= C1F(A∩B)- C2F(A - B)- C3F(B - A)

這個公式說明,兩個世界之間的相似關(guān)系是它們的共性與差異的函數(shù)。當C1遠遠大于C2和C3時,兩個系統(tǒng)之間的共性將比差異處于更重要的支配地位。其中,三個系數(shù)C1、C2和C3 的值是通過實驗來確定的。這樣,我們就有可能在經(jīng)驗的意義上來研究相似關(guān)系。在經(jīng)驗的意義上,如果相互競爭的理論中的某個理論的描述和說明模型能夠完全依據(jù)當前的實驗結(jié)果和本體論概念被加以校準,那么,我們就可以認為,這個理論是似真的(plausible)。理論越擬真,它就越逼真。

在一個特定的語境中,當一個理論的說明與理解模型能夠完全經(jīng)得起經(jīng)驗的考驗時,科學(xué)共同體將認為理論描繪的可能世界與真實世界之間達到了某種一致性。這時,科學(xué)的發(fā)展進入了語境確立的階段。這個階段相當于庫恩的常規(guī)科學(xué)時期或范式形成時期。這時,科學(xué)家不僅擁有共同的信念和共同的語言,而且擁有對真實世界的共同圖象。他們相信,理論描繪的可能世界代表了真實世界的內(nèi)在機理;理論描繪的圖象就是不可觀察的真實世界的圖象。為了進一步探索真實世界的精細結(jié)構(gòu),科學(xué)家常常會根據(jù)現(xiàn)有理論提供的信念和約定,設(shè)計新的實驗規(guī)劃,預(yù)言新的實驗現(xiàn)象,特別是運用成熟理論中的理論實體進行實驗操作,從而形成了一個相對穩(wěn)定的語境階段。但是,這個相對穩(wěn)定的語境邊界是非常不確定的。

當科學(xué)家把成熟理論所揭示的世界機理作為一個范式和信念的基礎(chǔ),延伸推廣到解釋其它相關(guān)領(lǐng)域的現(xiàn)象時,科學(xué)的發(fā)展進入到語境的擴張階段。其中,既包括理論研究的信念與方法的擴張,也包括以它的基本原理為基礎(chǔ)的技術(shù)與實驗的擴張。例如,在牛頓理論確立之后,不論是物理學(xué)還是化學(xué)家,他們都用牛頓力學(xué)的基本思想解釋他們所面臨的其它領(lǐng)域內(nèi)的新的實驗現(xiàn)象,并且成功地制造出了許多測量儀器;同樣,現(xiàn)代技術(shù)的崛起和分子生物學(xué)、量子化學(xué)等學(xué)科的產(chǎn)生都是量子力學(xué)的基本原理成功應(yīng)用的結(jié)果。所以,語境擴張的過程實際上是已有語境膨脹的過程。當科學(xué)共同體在語境擴張的過程中,遇到了與理論信念相矛盾的而且是他們料想不到的實驗事實時,他們才有可能開始對理論的信念產(chǎn)生懷疑,這時,理論的應(yīng)用邊界,或者說,語境擴張的邊界逐漸地變得明確起來,科學(xué)的發(fā)展開始進入語境轉(zhuǎn)換階段。在這個階段,舊語境的擴張受到了限制,新的語境處于形成與培育當中。新的理論競爭也就隨之開始了。隨著新理論競爭的開始,科學(xué)共同體的信念也在不斷地發(fā)生著改變,直到一個全新的語境形成為止。

當新的語境確立之后,不僅科學(xué)家確立了新的信念,而且他們對問題的求解值域也隨之發(fā)生了改變。這時,原來前語境中的一些不合理的偏見,在新語境中得到了糾正。在前語境中是真理的理論,在后語境中失去了它的真理性。后語境的形成是伴隨著新理論的確立而完成的。由于新語境比舊語境揭示出了更深層次的世界結(jié)構(gòu)或機理。所以,它在理論信念、方法和技術(shù)層次的擴張與滲透力將會比舊語境更強、更徹底。這也就是,為什么量子力學(xué)的產(chǎn)生所帶來的理論、方法與技術(shù)革命會比牛頓力學(xué)更深刻、更廣泛的原因所在。但是,前后語境之間的界線是連續(xù)的。這時,就像新理論是對舊理論的一種超越一樣,新語境也是對舊語境的一種超越。由于語境的變遷和運動是不斷地向著揭示世界的真實機理的方向發(fā)展的。因此,在語境中生成的理論也使得科學(xué)的發(fā)展與進步向著不斷地逼近真理的方向進行。本文把科學(xué)發(fā)展的這種模式稱為“語境生成論模式”。

這里包括兩個層次的生成,其一,理論的形成與完善是在特定的語境中進行的;其二,科學(xué)進步也是在語境的變更中完成的。但是,值得注意的是,強調(diào)語境化并不意味著使科學(xué)進步成為無規(guī)則的游戲。把理論系統(tǒng)放置于特定的語境當中,強調(diào)了系統(tǒng)的開放性和連續(xù)性。在這個意義上,語境論的事實也是一種客觀事實。運用語境論的隱喻思考與模型化方法,不僅能夠使科學(xué)進步過程中的微觀的邏輯結(jié)構(gòu)與宏觀的歷史背景有機地結(jié)合起來,而且能夠使基本的內(nèi)在邏輯的東西在歷史的發(fā)展中內(nèi)化到新的語境當中,從而使得語境在自然更替的同時,一方面,完成了理論知識的積累與繼承的任務(wù);另一方面,揭示出更深層次的世界機理。所以,語境生成論的科學(xué)進步模式既不會像庫恩的范式論那樣,走向相對主義,也不會像普特南那樣,走向多元真理論??茖W(xué)進步的語境生成論模式,既能夠包容相對主義的某些合理成份,又能夠堅持實在論的立場。

5.結(jié)語

從量子力學(xué)的認識論教益中抽象出的語境實在論的觀點,是一種具有更廣泛的解釋力,并且有可能把許多觀點有機地融合在一起的實在論觀點。它不僅能夠賦予量子力學(xué)以實在論的解釋,而且為解決科學(xué)實在論面臨的許多責(zé)難,理清上世紀末圍繞“索卡爾事件”所發(fā)生的一場震驚西方學(xué)壇的科學(xué)大戰(zhàn),[1] 提供了一條可能的思路。法因曾經(jīng)在《擲骰子游戲:愛因斯坦與量子論》一書中斷言“實在論已經(jīng)死了”。[2] 然而,我們通過對量子力學(xué)與實在論的分析,在放棄了傳統(tǒng)的真理符合論之后,運用隱喻思考與模型化方法所得出的結(jié)論則是,“實在論還活著,而且活的很好”。

[1] D.Bohm and B.J.Hiley, The Unpided Universe: An ontological interpretation of quantum theory, Routledge and Kegan Paul, London (1993).

[1] Jeffrey Alan Barrett, The Quantum Mechanics of Minds and Worlds, Oxford University Press (1999).

[1] Jerrold L. Aronson, Rom Harré & Eileen Cornell Way, Realism Rescued: How Scientific progress of possible, Gerald Duckworth & Co.Ltd (1994): 136-137.

[1] Jerrold L. Aronson, Rom Harré & Eileen Cornell Way, Realism Rescued: How Scientific progress of possible, Gerald Duckworth & Co.Ltd (1994): 133.

第4篇

本書詳細闡述了熱中子散射的基本量子理論以及相關(guān)概念對于晶體、液體和磁系統(tǒng)散射的應(yīng)用。細致地介紹了散射的關(guān)聯(lián)函數(shù)、散射的動力學(xué)理論和散射過程中的極化分析。特別強調(diào)了現(xiàn)代方法的應(yīng)用。它的第1版于1978年問世,第2版于1996年出版。本書是作者去世2年以后2012年出版的第3版。

本書源自1973年由物理研究所和法拉第協(xié)會中子散射組組織的暑期學(xué)校的一些講義。它是為從事熱中子散射研究的實驗者而非理論家撰寫的,他們想以一種非正式的方式了解該領(lǐng)域的理論思想。但是作者希望本書也能引起相關(guān)領(lǐng)域的更廣泛的學(xué)生和研究人員的興趣。

本書并未要求讀者先具備熱中子散射的知識,但要求熟悉量子力學(xué)和固體物理學(xué)的基本概念,為方便讀者利用該書,本書附錄中簡略地歸納了相關(guān)論題必需的一些基礎(chǔ)知識,包括了簡明扼要的數(shù)學(xué)推導(dǎo)和證明。

本書作者Gordon L. Squires (1924-2010)從1956年起擔(dān)任劍橋大學(xué)物理學(xué)講師和劍橋大學(xué)三一學(xué)院研究員,由劍橋大學(xué)出版社出版的他的“量子力學(xué)習(xí)題集”(Problems in Quantum Mechanics with Solutions)受到普遍的好評。1991年他退休之后直到2010年去世,一直擔(dān)任卡文迪什實驗室博物館館長,撰寫了許多關(guān)于劍橋的科學(xué)家和科學(xué)發(fā)現(xiàn)的文章。

第5篇

1、相對論是20世紀杰出的物理學(xué)家阿爾伯特·愛因斯坦提出的。相對論是關(guān)于時空和引力的理論,依其研究對象的不同可分為狹義相對論和廣義相對論。

2、相對論和量子力學(xué)的提出給物理學(xué)帶來了革命性的變化,它們共同奠定了現(xiàn)代物理學(xué)的基礎(chǔ)。相對論極大地改變了人類對宇宙和自然的“常識性”觀念,提出了“同時的相對性”、“四維時空”、“彎曲時空”等全新的概念。不過近年來,人們對于物理理論的分類有了一種新的認識——以其理論是否是決定論的來劃分經(jīng)典與非經(jīng)典的物理學(xué),即“非經(jīng)典的=量子的”。在這個意義下,相對論仍然是一種經(jīng)典的理論。

3、狹義相對論在狹義相對性原理的基礎(chǔ)上統(tǒng)一了牛頓力學(xué)和麥克斯韋電動力學(xué)兩個體系,指出它們都服從狹義相對性原理,都是對洛倫茲變換協(xié)變的,牛頓力學(xué)只不過是物體在低速運動下很好的近似規(guī)律。廣義相對論又在廣義協(xié)變的基礎(chǔ)上,通過等效原理,建立了局域慣性長與普遍參照系數(shù)之間的關(guān)系,得到了所有物理規(guī)律的廣義協(xié)變形式,并建立了廣義協(xié)變的引力理論,而牛頓引力理論只是它的一級近似。

4、這就從根本上解決了以前物理學(xué)只限于慣性系的問題,從邏輯上得到了合理的安排。相對論嚴格地考察了時間、空間、物質(zhì)和運動這些物理學(xué)的基本概念,給出了科學(xué)而系統(tǒng)的時空觀和物質(zhì)觀,從而使物理學(xué)在邏輯上成為完美的科學(xué)體系。

(來源:文章屋網(wǎng) )

第6篇

關(guān)鍵詞:結(jié)構(gòu)化學(xué);課程特點;學(xué)習(xí)興趣;教學(xué)

中圖分類號:G642.41 文獻標志碼:A 文章編號:1674-9324(2014)20-0118-03

結(jié)構(gòu)化學(xué)是在原子、分子的水平上研究原子、分子和晶體結(jié)構(gòu)的運動規(guī)律以及物質(zhì)微觀結(jié)構(gòu)與其性能關(guān)系的科學(xué)[1-4]。著名化學(xué)家L.Pauling說過“當任何一種物體,當它的性質(zhì)和物體的結(jié)構(gòu)聯(lián)系起來時,那么這樣一種性質(zhì)最容易最清楚地被理解”,理論化學(xué)家R.Hoffmann也曾說過“化學(xué)理論最重要的作用是提供一種思維機制,以總結(jié)更新知識”。從中可見結(jié)構(gòu)化學(xué)地位的重要性。該課程涉及的知識面廣,內(nèi)容相對抽象,要求學(xué)生具有較多的數(shù)理知識和豐富的空間思維能力,同時還要努力擺脫宏觀現(xiàn)象的傳統(tǒng)概念的束縛。大部分學(xué)生始終把學(xué)習(xí)結(jié)構(gòu)化學(xué)當成一種負擔(dān),學(xué)習(xí)起來感覺很枯燥,一知半解,似懂非懂,難以進入狀態(tài)。因此,本人根據(jù)結(jié)構(gòu)化學(xué)課程的特點和學(xué)生在學(xué)習(xí)過程中存在的主要問題以及如何培養(yǎng)學(xué)生的學(xué)習(xí)興趣三方面進行了積極的思考和有益的探索。

一、結(jié)構(gòu)化學(xué)課程的特點

在高等師范院校中,結(jié)構(gòu)化學(xué)課程通常開設(shè)在第三學(xué)年,是在學(xué)生修完高等數(shù)學(xué)、大學(xué)物理、無機化學(xué)、有機化學(xué)、分析化學(xué)、物理化學(xué)等課程基礎(chǔ)上開設(shè)的。該課程主要包括三種理論(量子理論、化學(xué)鍵理論和點陣理論),三種結(jié)構(gòu)(原子結(jié)構(gòu)、分子結(jié)構(gòu)和點陣結(jié)構(gòu)),三個基礎(chǔ)(量子力學(xué)基礎(chǔ)、對稱性基礎(chǔ)和晶體學(xué)基礎(chǔ)),這也是學(xué)生學(xué)習(xí)結(jié)構(gòu)化學(xué)時所要掌握的主要內(nèi)容及學(xué)習(xí)方法[2]。

結(jié)構(gòu)化學(xué)是學(xué)生本科階段初次接觸的理論課程,它是一門以量子力學(xué)為基礎(chǔ),從微觀的角度來研究物質(zhì)結(jié)構(gòu)的學(xué)科,具有概念多,內(nèi)容抽象,系統(tǒng)性、理論性較強等特點。另外,結(jié)構(gòu)化學(xué)與數(shù)學(xué)、物理等學(xué)科互為交叉,所以要求學(xué)生具有嚴密的邏輯思維和扎實的數(shù)學(xué)、物理學(xué)等基礎(chǔ)知識。其次,化學(xué)是一門以實驗為基礎(chǔ)的自然科學(xué),但是其研究的微觀結(jié)構(gòu)狀態(tài)很難在宏觀的實驗中觀察出來,所以還要求學(xué)生具有較強的空間思維能力。因此,結(jié)構(gòu)化學(xué)比較深奧、難學(xué)、難懂,往往被大多數(shù)學(xué)生認為是最難學(xué)的課程之一。

二、學(xué)生學(xué)習(xí)結(jié)構(gòu)化學(xué)過程中存在的主要問題

1.從心理上害怕結(jié)構(gòu)化學(xué)。結(jié)構(gòu)化學(xué)所涉及的基本概念及理論高度抽象,一方面,有些老師在上第一節(jié)課時會告訴學(xué)生結(jié)構(gòu)化學(xué)這門課程很重要,也很難學(xué),許多同學(xué)都因不及格而重修;另一方面,學(xué)生還沒開始正式學(xué)習(xí),就從高年級學(xué)生那里得知結(jié)構(gòu)化學(xué)難學(xué),不及格率較高。因此,從心理上學(xué)生對學(xué)習(xí)結(jié)構(gòu)化學(xué)產(chǎn)生一種畏懼和抵觸心理。

2.學(xué)生學(xué)習(xí)結(jié)構(gòu)化學(xué)存在誤區(qū)。很多學(xué)生對結(jié)構(gòu)化學(xué)的學(xué)習(xí)內(nèi)容沒有充分認識,認為研究生入學(xué)資格考試不考結(jié)構(gòu)化學(xué),學(xué)習(xí)結(jié)構(gòu)化學(xué)根本沒用,只是為了應(yīng)付考試。實際上這是一種誤區(qū),部分高校(如南開大學(xué))物理化學(xué)專業(yè)碩士學(xué)位研究生的入學(xué)考試就包含結(jié)構(gòu)化學(xué)。而且結(jié)構(gòu)化學(xué)也非常有用,可以了解化學(xué)反應(yīng)的本質(zhì),可以合成滿足人類一定需要的新物質(zhì),也是學(xué)習(xí)高等化學(xué)的基礎(chǔ)等。

3.學(xué)生數(shù)理知識薄弱。結(jié)構(gòu)化學(xué)內(nèi)容涉及面廣,如需具備高等數(shù)學(xué)、無機化學(xué)、有機化學(xué)、物理化學(xué)及量子力學(xué)等知識,學(xué)習(xí)化學(xué)的學(xué)生數(shù)理知識普遍較差,對于結(jié)構(gòu)化學(xué)中大量的數(shù)學(xué)推導(dǎo)過程感覺很費力,致使學(xué)生對該課程產(chǎn)生排斥心理。

4.缺乏微觀分析能力。量子力學(xué)是研究微觀粒子的運動規(guī)律的物理學(xué)分支學(xué)科,它主要研究原子、分子、凝聚態(tài)物質(zhì),以及原子核和基本粒子的結(jié)構(gòu)、性質(zhì)的基礎(chǔ)理論,它與相對論一起構(gòu)成了現(xiàn)代物理學(xué)的理論基礎(chǔ)[5]。結(jié)構(gòu)化學(xué)以量子力學(xué)為理論基礎(chǔ),使人們對物質(zhì)世界的認識從宏觀層次進入了微觀層次。而量子力學(xué)獨立于經(jīng)典物理學(xué),自成一套理論體系,內(nèi)容抽象,脫離生活實際,邏輯性強,抽象思維程度高,學(xué)生易受宏觀思維定式束縛。

5.理論與實踐脫節(jié)。結(jié)構(gòu)化學(xué)是重要的基礎(chǔ)科學(xué)之一,是一門以實驗為基礎(chǔ)的學(xué)科,在與物理學(xué)、生物學(xué)、天文學(xué)等學(xué)科的相互滲透中,得到了迅速的發(fā)展,也推動了其他學(xué)科和技術(shù)的發(fā)展。但是,在學(xué)習(xí)這門課程的同時,多數(shù)學(xué)生只在乎教程中的理論知識,從而忽略了思考與其他學(xué)科的相互關(guān)聯(lián)。另外,大多數(shù)學(xué)生學(xué)習(xí)結(jié)構(gòu)化學(xué)缺乏實踐,把學(xué)習(xí)它當成了一項應(yīng)付考試的任務(wù),這與學(xué)習(xí)這門課的宗旨背道而馳。

6.學(xué)生之間缺乏交流。結(jié)構(gòu)化學(xué)以數(shù)學(xué)邏輯推導(dǎo)為基礎(chǔ),物理模型抽象難懂,學(xué)生學(xué)習(xí)方式單一、被動。學(xué)生的學(xué)習(xí)方式主要體現(xiàn)個體性,教師與學(xué)生之間,學(xué)生與學(xué)生之間經(jīng)常處于一種緊張甚至對立的狀態(tài),課堂上很少看見人際間的交流、觀點的交鋒和智慧的碰撞,學(xué)生的學(xué)習(xí)始終處于被動應(yīng)付狀態(tài)。學(xué)生缺少自主探索、合作交流、獨立獲取知識的機會,很少有機會表達自己的理解和意見。

三、激發(fā)學(xué)生學(xué)習(xí)結(jié)構(gòu)化學(xué)的興趣

根據(jù)結(jié)構(gòu)化學(xué)課程的上述特點及學(xué)生學(xué)習(xí)過程中存在的主要問題,培養(yǎng)學(xué)生學(xué)習(xí)興趣是提高結(jié)構(gòu)化學(xué)教學(xué)質(zhì)量的前提和關(guān)鍵。愛因斯坦說過:“興趣是最好的老師。”學(xué)生只有有了學(xué)習(xí)興趣,才會積極配合教師的教學(xué),教師才能夠更新教學(xué)理念,提高課程教學(xué)效果。下面筆者結(jié)合兩年來在結(jié)構(gòu)化學(xué)教學(xué)實踐中的親身體會,介紹在結(jié)構(gòu)化學(xué)課程教學(xué)中如何激發(fā)學(xué)生的學(xué)習(xí)興趣。

1.明確學(xué)習(xí)結(jié)構(gòu)化學(xué)的目的與意義。結(jié)構(gòu)化學(xué)包括很多有用的基本概念和許多重要的規(guī)律和原理。教師要讓學(xué)生了解通過結(jié)構(gòu)化學(xué)的學(xué)習(xí)可以學(xué)到扎實的基礎(chǔ)知識和和理論知識,可為后續(xù)專門化課程的學(xué)習(xí)做好必要的理論基礎(chǔ)。同時也讓學(xué)生知道通過結(jié)構(gòu)化學(xué)的學(xué)習(xí)可以了解化學(xué)反應(yīng)的機理,例如,NO分子分解為N2和O2時在熱力學(xué)上是可以自發(fā)進行的,但此反應(yīng)是動力學(xué)禁阻的,只有用結(jié)構(gòu)化學(xué)中的前線軌道理論才能夠容易證明這一點。另外,通過結(jié)構(gòu)化學(xué)知識的學(xué)習(xí),人們很容易合成出新物質(zhì)(如新材料、新藥的合成),其結(jié)構(gòu)測定與分子的設(shè)計過程必須具有扎實的結(jié)構(gòu)化學(xué)知識。還有結(jié)構(gòu)化學(xué)的發(fā)展對化學(xué)學(xué)科的發(fā)展也有重大的推動作用(化學(xué)界化學(xué)的兩次革命性飛躍)等。

2.介紹科學(xué)奇聞趣事,陶冶學(xué)生情操。結(jié)構(gòu)化學(xué)教學(xué)內(nèi)容理論性較強,若在課堂教學(xué)中引入科學(xué)大師的物理學(xué)史教育,有助于激發(fā)學(xué)生的學(xué)習(xí)熱情。例如,在介紹薛定諤方程時,可以向大家介紹薛定諤的奮斗歷程,薛定諤被稱為量子物理學(xué)之父,23歲時獲得奧地利維也納大學(xué)哲學(xué)博士學(xué)位,1926年建立波動力學(xué)(39歲),1933年獲得諾貝爾物理學(xué)獎(46歲),同時告訴學(xué)生薛定諤不僅僅數(shù)學(xué)物理好,而且他的文學(xué)功底也非常好,于1944年整理出版了一本著作《生命是什么》。這樣學(xué)生在了解相關(guān)知識背景的同時,開闊了視野,提高了思維能力,受到了科學(xué)態(tài)度、科學(xué)精神的熏陶,激發(fā)了其學(xué)習(xí)熱情。

3.充分利用多媒體輔助教學(xué),提升課堂教學(xué)效果。多媒體輔助教學(xué)作為一種現(xiàn)代化的教學(xué)手段,可以把文本、音頻、視頻、圖像、圖表、動畫等多種媒體信息綜合為一體化并進行加工處理,為課堂教學(xué)提供了豐富、直觀、真實的語言材料,啟迪學(xué)生的思維,從而優(yōu)化課堂結(jié)構(gòu),提高課堂教學(xué)效果。例如原子核外電子運動狀態(tài)、電子云的概念、雜化軌道理論、等徑圓球密堆積結(jié)構(gòu)、離子晶體結(jié)構(gòu)等都比較抽象,想象力較差的學(xué)生理解起來相對困難,若我們在計算機軟件中,用二維、三維動畫模擬顯示[6],將抽象、微觀的內(nèi)容具體化、宏觀化,使學(xué)生能夠?qū)崿F(xiàn)對物質(zhì)微觀結(jié)構(gòu)更好的理解。

4.把最新科研成果引入課堂,以科研促進教學(xué),激發(fā)學(xué)生學(xué)習(xí)興趣。教師還可以精心創(chuàng)設(shè)一些引人入勝的實踐環(huán)節(jié),增強教學(xué)內(nèi)容的趣味性,使學(xué)生在學(xué)習(xí)過程中能夠感受到所學(xué)知識的實用性。教材內(nèi)容往往有所落后,已不適應(yīng)當今社會發(fā)展的需要,而社會生活和科學(xué)知識卻不斷地迅猛發(fā)展,及時給學(xué)生補充最新的信息,將新的科研動態(tài)、知識引入結(jié)構(gòu)化學(xué)教學(xué)課堂,豐富課堂內(nèi)容,將抽象生硬的知識點轉(zhuǎn)化為生動具體的科研案例進行解釋和說明,調(diào)動了學(xué)生的學(xué)習(xí)積極性,保證了教學(xué)質(zhì)量,促進了我們教學(xué)理念的轉(zhuǎn)變,使課堂教學(xué)的面貌大為改觀。

5.不斷改進教學(xué)方法,吸引學(xué)生的學(xué)習(xí)興趣。教師可采用多種形式的教學(xué)方法,創(chuàng)造一個輕松愉快的學(xué)習(xí)氛圍,激發(fā)學(xué)生的學(xué)習(xí)興趣。教師教學(xué)語言要盡可能做到用詞準確,條理清晰,生動有趣,富有感染力,學(xué)生易于接受。另外教師可以采用討論式教學(xué)方法,這種方法主要運用習(xí)題范例和關(guān)鍵知識點的應(yīng)用實例,或者是就某一個關(guān)鍵問題進行辯論,師生平等互動,活躍課堂氣氛,提高課堂教學(xué)效率。同時教師也可采用提問式課堂教學(xué),引發(fā)學(xué)生好奇心,讓學(xué)生進行創(chuàng)造性的思維活動,不斷地激發(fā)他們的求知需求。再者,教師還可以精心創(chuàng)設(shè)一些引人入勝的教學(xué)情境,增強教學(xué)內(nèi)容的趣味性,使學(xué)生在學(xué)習(xí)過程中能夠感受到其樂融融,從而達到“我要學(xué)”的最佳境地。

6.加強師生之間的情感交流,提高學(xué)生的學(xué)習(xí)熱情。課堂教學(xué)不僅是知識信息的交流過程,也是情感信息的交流過程。心理學(xué)家莫維爾說:“情感如同肥沃的土地,知識的種子就播種在土壤里?!笨梢姺e極的情感能調(diào)動學(xué)生的學(xué)習(xí)積極性,有利于優(yōu)化課堂教學(xué),改善課堂教學(xué)效果,提高學(xué)生的學(xué)習(xí)熱情。

四、小結(jié)

綜上所述,本文介紹了結(jié)構(gòu)化學(xué)課程的特點、學(xué)生學(xué)習(xí)過程中存在的主要問題以及如何激發(fā)學(xué)生的學(xué)習(xí)興趣,那么如何將結(jié)構(gòu)化學(xué)抽象、難以理解的知識形象化,如何運用各種合理的教學(xué)方法提高自己的教學(xué)水平,培養(yǎng)和激發(fā)學(xué)生的學(xué)習(xí)興趣,仍然是教師特別是青年教師需要長期思考的一個問題。

參考文獻:

[1]潘道皚,趙成大,鄭載興.物質(zhì)結(jié)構(gòu)(第2版)[M].北京:高等教育出版社出版,2004.

[2]周公度,段連運.結(jié)構(gòu)化學(xué)基礎(chǔ)(第4版)[M].北京:北京大學(xué)出版社,2008.

[3]彭鵬,柴春霞.高等師范院校結(jié)構(gòu)化學(xué)課程的難點探析[J].周口師范學(xué)院學(xué)報,2010,27(3):75-77.

[4]孫巧珍.關(guān)于結(jié)構(gòu)化學(xué)教學(xué)改革的實踐體會[J].考試周刊,2011,(18):27-28.

[5]曾謹言.量子力學(xué)教程(第2版)[M].北京:科學(xué)出版社,2003.

[6]宋國拓,蔡俊.淺議化學(xué)教改前景――計算機輔助教學(xué)的應(yīng)用[J].西北民族學(xué)院學(xué)報.2000,21(3):23-25.

第7篇

1.基本概念介紹

為了便于厘清量子通信技術(shù)的相關(guān)概念,本文基于量子行業(yè)曲線linkindustryDOI:10.3969/j.issn.1001-8972.2022.11.002可替代度影響力行業(yè)關(guān)聯(lián)度技術(shù)的發(fā)展以及相關(guān)概念內(nèi)在的聯(lián)系,下面著重對量子、量子通信、量子密鑰分發(fā)以及量子保密通信的概念分別予以闡述。

1.1量子

普朗克提出了光輻射的能量是非連續(xù)的,而是一份一份的,對于頻率為ν的電磁波,這一份能量為hν,其中,h為普朗克常數(shù)。這一份能量就是電磁波在頻率ν下的最小能量。隨著頻率的不同,這個最小能量也不同,普朗克稱這個最小能量為“量子”(Quantum)。愛因斯坦看到了普朗克的量子假說后,更進一步地認為,電磁波本質(zhì)上就是由一份一份的能量組成的,他稱為光量子,也就是光子(Photon)。

1.2量子通信

20世紀90年代以后,隨著對量子等微觀粒子的不斷調(diào)控,當人們將基于經(jīng)典物理學(xué)描述過程的信息傳輸變換成基于量子力學(xué)描述和操控的過程時,便催生出了一種新的通信方式:量子通信。量子通信不應(yīng)該簡單地從字面意思理解為通過量子來通信,真正的“量子通信”的含義應(yīng)是利用量子態(tài)作為信息載體來進行信息交互的通信技術(shù)?,F(xiàn)階段,量子通信的一種典型應(yīng)用是量子密鑰分發(fā)(QuantumKeyDistribution,QKD),量子密鑰分發(fā)可用來實現(xiàn)經(jīng)典信息的安全傳輸。

1.3量子密鑰分發(fā)

量子密鑰分發(fā)作為量子通信的典型應(yīng)用之一,是最先實用化起來的量子信息技術(shù)?,F(xiàn)有實際的量子密鑰分發(fā)系統(tǒng)主要采用的是由IBM的C.H.Bennett和G.Brassard在1984提出的BB84協(xié)議,其與經(jīng)典密碼體制不同,量子密鑰分發(fā)是基于量子力學(xué)的基本原理,能夠保證密鑰的安全性,這種安全性在學(xué)術(shù)界稱為“信息理論安全”或者“無條件安全”,是經(jīng)過嚴格的數(shù)學(xué)證明的。因此,量子密鑰分發(fā)能夠在空間上分隔的用戶之間以信息理論安全的方式共享密鑰。1.4量子保密通信量子密鑰分發(fā)可以通過對量子態(tài)的傳輸和測量,為經(jīng)典數(shù)字通信建立牢不可破的量子密鑰,為經(jīng)典信息的加密服務(wù)提供安全性保證,因此,可以將QKD技術(shù)作為密鑰分發(fā)功能組件,結(jié)合適當?shù)拿荑€管理、安全的密碼算法和協(xié)議而形成的加密通信安全解決方案定義為量子保密通信。目前,以量子密鑰分發(fā)為核心的量子保密通信已是量子通信領(lǐng)域的主要發(fā)展方向?;谇懊娴慕榻B,我們可以清晰地理出量子密鑰分發(fā)、量子通信和量子保密通信的層次關(guān)系,如圖1所示。

2.專利技術(shù)布局分析

近年來,國內(nèi)外對量子通信技術(shù)日益重視,紛紛加大對相關(guān)技術(shù)的研發(fā)力度,圖2、圖3、圖4、圖8、圖9分別展示的全球/中國量子通信行業(yè)規(guī)模以及量子通信技術(shù)的專利申請量和專利申請人態(tài)勢的持續(xù)增長均可見一斑。我們通過對國際專利分類體系(IPC)和聯(lián)合專利分類體系(CPC)中的與量子通信相關(guān)的分類號進行統(tǒng)計分析,得出與量子通信技術(shù)相關(guān)的分類號主要集中在H04L9、H04B10。其中H04L9主要描述的是量子密碼相關(guān)的密碼、密鑰的產(chǎn)生、共享或更新,H04B10主要描述的是量子通信的傳輸系統(tǒng)。通過對H04L9下的專利統(tǒng)計分析,將其技術(shù)分支劃分為量子密鑰分發(fā)、量子秘密共享、量子隱形傳態(tài)、量子安全直接通信、量子簽名、量子隨機數(shù)發(fā)生器。通過對H04B10下的專利統(tǒng)計分析,將其技術(shù)分支劃分為信號生成、信號探測、信號調(diào)制。通過對上述技術(shù)分支進行統(tǒng)計,不難看出量子密鑰分發(fā)、量子簽名和信號探測三個技術(shù)分支的相關(guān)專利申請居前,從側(cè)面也說明這三個技術(shù)分支是目前量子通信技術(shù)領(lǐng)域研究的熱點和關(guān)注所在。下面選取了量子通信技術(shù)中的量子密鑰分發(fā)和信號探測兩個熱點技術(shù)分支來著重了解一下。

2.1關(guān)鍵技術(shù)之密鑰分發(fā)

通過對量子密鑰分發(fā)技術(shù)的專利進行統(tǒng)計,由圖6可知在全球和中國該關(guān)鍵技術(shù)近年來保持增長態(tài)勢。聚焦到該細分技術(shù)領(lǐng)域的專利分析后,發(fā)現(xiàn)目前針對該技術(shù)分支的研究的關(guān)注焦點主要集中在:(1)離散變量量子密鑰分發(fā)DV-QKD的改進。如CN213879845U中采用環(huán)形網(wǎng)絡(luò)實現(xiàn)了一種三用戶TF-QKD網(wǎng)絡(luò)系統(tǒng),對現(xiàn)有的只是兩用戶的量子通信TF-QKD協(xié)議進行改進,結(jié)構(gòu)簡單,易于實現(xiàn);(2)連續(xù)變量量子密鑰分發(fā)CV-QKD的改進。如CN107682144A中優(yōu)化現(xiàn)有的信息調(diào)制技術(shù),改進數(shù)據(jù)后處理流程,提高后處理的數(shù)據(jù)處理速度,提高CV-QKD系統(tǒng)的密鑰率。在DV-QKD技術(shù)方面,尤其是雙場量子密鑰分發(fā)協(xié)議(Twin-FieldQuantumKeyDistribution,TF-QKD)的提出使得整個QKD傳輸系統(tǒng)的性能,尤其是數(shù)據(jù)傳輸能力,得到了顯著提高,而CV-QKD技術(shù)在成本和集成度方面優(yōu)勢明顯?;谀壳癈V-QKD技術(shù)和DV-QKD技術(shù)在安全傳輸距離方面存在的差異,以及兩者由于固有的特點在應(yīng)用場景上的不同側(cè)重,使得兩者可以形成很好的互補關(guān)系,從而具備了構(gòu)建商業(yè)化系統(tǒng)的條件。當前國內(nèi)在DV-QKD方面的研究機構(gòu)主要有國盾量子、九州量子、國騰量子、華南師范大學(xué)、中國科學(xué)技術(shù)大學(xué)、安徽問天量子科技;在CV-QKD方面的研究機構(gòu)主要有循態(tài)量子、華為、烽火通信、北京大學(xué)、北京郵電大學(xué)。

2.2關(guān)鍵技術(shù)之信號探測

通過對信號探測技術(shù)的專利進行統(tǒng)計,由圖7可知在全球和中國該關(guān)鍵技術(shù)近年來同樣保持增長態(tài)勢。聚焦到該細分技術(shù)領(lǐng)域的專利分析后,發(fā)現(xiàn)目前針對該技術(shù)分支研究的關(guān)注焦點主要集中在:(1)探測效率的改進。如CN112929170A中引入本地本振強光,避免接收機的探測效率變低,提高系統(tǒng)的成碼率。(2)系統(tǒng)設(shè)計的改進。如CN107196758A中提供一種單光子探測方法,通過對同步信號進行相位切換和分段延時掃描的方式達到單光子信號的正周期延時,降低系統(tǒng)的冗余度。目前,單光子探測技術(shù)是量子通信系統(tǒng)中接收端探測微弱量子信號的主流技術(shù),其中的超導(dǎo)納米線單光子探測(superconductingnanowiresinglephotondetector,SNSPD)技術(shù)具備低暗計數(shù)、高量子探測效率等優(yōu)異特性,成為量子通信系統(tǒng)信號接收端重點關(guān)注對象。2021年7月5日,中科大潘建偉團隊在預(yù)印本arXiv上公開了113個光子的量子計算機原型機“九章2.0”,在實現(xiàn)“高斯玻色取樣”任務(wù)的快速求解的同時,其中的一項核心技術(shù)SNSPD,使得平均系統(tǒng)探測效率達到了83%。

2.3量子通信技術(shù)的創(chuàng)新主體情況

從全球范圍的量子通信技術(shù)專利布局情況來看,目前國內(nèi)走在前列的創(chuàng)新主體有:九州量子、神州量子、安徽問天、國盾量子、如般量子、中國科學(xué)技術(shù)大學(xué)、北京郵電大學(xué)、華南師范大學(xué)、中國電子科技集團公司電子科學(xué)研究院、阿里巴巴。國外的創(chuàng)新主體主要分布在美國、歐洲、日本、韓國,包括:日本的東芝公司、日本電信電話株式會社、三菱株式會社、日本電氣株式會社,美國的MagiQ技術(shù)公司、惠普、谷歌,芬蘭的諾基亞,英國電信集團,韓國電子通信研究院、韓國科學(xué)技術(shù)院。

3.未來發(fā)展展望

第8篇

關(guān)鍵詞:固體物理;課程教學(xué);教學(xué)方法;教學(xué)改革

中圖分類號:G642.0 文獻標志碼:A 文章編號:1674-9324(2015)43-0158-02

固體物理,作為高等學(xué)校本科課程計劃中一門重要的基礎(chǔ)理論課程。它是以固體的組成結(jié)構(gòu)以及組成粒子(原子、離子、電子等)之間相互作用與運動規(guī)律為主要研究對象,闡明其各自相關(guān)的性能與用途[1],是材料相關(guān)學(xué)科的理論基礎(chǔ),同時也在當代科學(xué)研究中起著重要的基礎(chǔ)理論作用。材料學(xué)科專業(yè)的學(xué)生掌握一定的固體物理知識及其研究方法,有助于開闊科學(xué)視野,為今后的發(fā)展奠定知識基礎(chǔ)。因此,國內(nèi)綜合性大學(xué)、師范院校以及許多工科院校的理工科專業(yè)均普遍開設(shè)了這門課程。以此認識為出發(fā)點,筆者圍繞材料學(xué)科各專業(yè)固體物理教學(xué)的特點,結(jié)合固體物理課堂教學(xué)的經(jīng)驗和體會,對其教學(xué)內(nèi)容、教學(xué)方法和手段等方面提出了一些改革措施與探索,以期待為推動高等學(xué)校固體物理課程教學(xué)的改革、提高教學(xué)質(zhì)量發(fā)揮積極的促進作用。

一、材料學(xué)科固體物理教學(xué)現(xiàn)狀

高等學(xué)校材料學(xué)科相關(guān)專業(yè)要求培養(yǎng)學(xué)生具有扎實的基礎(chǔ)理論知識和系統(tǒng)的專業(yè)知識,能夠了解材料相關(guān)學(xué)科最新的發(fā)展趨勢,具有從事科學(xué)研究工作和專業(yè)技術(shù)工作的基本能力。因此,在材料學(xué)科的培養(yǎng)計劃中,要求學(xué)生應(yīng)當學(xué)習(xí)基本的基礎(chǔ)知識和基本技能。固體物理課程就是其中一門重要的課程,它要求學(xué)生初步具備高等數(shù)學(xué)、普通物理、熱力學(xué)與統(tǒng)計物理學(xué)和量子力學(xué)等相關(guān)的基礎(chǔ)知識作為固體物理課程學(xué)習(xí)的前提,其主要目的是研究固體物質(zhì)(主要以晶態(tài)物質(zhì)為主)的基本物理性質(zhì)、構(gòu)成物質(zhì)的各種粒子的運動形式及其相互關(guān)系[2]。作為工科材料學(xué)科的固體物理課程,其教學(xué)方式、教學(xué)內(nèi)容與高等師范院校有明顯的差別。固體物理與材料學(xué)科的其他課程既有聯(lián)系又有區(qū)別。一方面,工科學(xué)生雖然經(jīng)過部分專業(yè)課程的學(xué)習(xí),具有大學(xué)物理和材料科學(xué)基礎(chǔ)等方面的知識,但是固體物理課程開設(shè)的前提要求學(xué)生具備有扎實的高等數(shù)學(xué)、統(tǒng)計物理、量子力學(xué)、以及分析力學(xué)和群論的基礎(chǔ)知識,這些基礎(chǔ)是工科學(xué)生沒有學(xué)到也不具備的。另一方面,工科材料學(xué)科在固體物理教學(xué)的學(xué)時方面安排的較少,一般為32學(xué)時或40學(xué)時,因此,不可能在有限課堂上系統(tǒng)補習(xí)該方面的內(nèi)容,學(xué)生也更沒有更多的時間和精力去自學(xué),更何況統(tǒng)計物理、量子力學(xué)等本身就有相當?shù)碾y度[3]。綜合以上各方面的原因與現(xiàn)狀,工科材料學(xué)專業(yè)的本科學(xué)生的固體物理課,容易導(dǎo)致學(xué)生因基礎(chǔ)知識的不具備而跟不上固體物理的理論推導(dǎo)過程,造成教師很難順利將課程的主要內(nèi)容進行完整而系統(tǒng)的講授,學(xué)生也聽不懂,產(chǎn)生厭學(xué)情緒。因此,在選擇教學(xué)內(nèi)容、教學(xué)方式和制定教學(xué)計劃等方面時,必須考慮學(xué)生對本課程的接受能力。

二、固體物理教學(xué)內(nèi)容與教學(xué)方法的改革措施

針對上述工科材料學(xué)科專業(yè)學(xué)生的基礎(chǔ)知識儲備情況和現(xiàn)狀,以及考慮到固體物理課程的特點,筆者結(jié)合近幾年工科材料學(xué)科固體物理課程教學(xué)的經(jīng)驗和體會,對固體物理課程的教學(xué)進行探索,提出以下關(guān)于本課程的改革措施。

(一)結(jié)合學(xué)生基礎(chǔ),選用與本學(xué)科相適應(yīng)的教材

選擇一本好的教材,是學(xué)生學(xué)好一門課程的基礎(chǔ)。對于固體物理來說,不乏經(jīng)典的教材,如黃昆先生的教材[1]。但是,固體物理教材基本上是為物理專業(yè)的本科生和研究生而編寫的,現(xiàn)有的教材鮮有專門為工科材料等學(xué)科編寫的教材,對只有學(xué)習(xí)過普通物理和材料科學(xué)基礎(chǔ)等的工科本科生來說,本課程難度非常大。因此,對于工科材料學(xué)科的固體物理課程,在選擇教材時,盡量選擇能系統(tǒng)地包含固體物理的經(jīng)典內(nèi)容,同時要求容易理解和知識程度較淺的。選擇好一本教材時,還要對教材內(nèi)容進行篩選,選擇適合本專業(yè)章節(jié),同時也要兼顧固體物理的系統(tǒng)性。

(二)制定符合本專業(yè)的教學(xué)大綱,合理選取教學(xué)內(nèi)容

固體物理內(nèi)容龐大,針對工科材料專業(yè)的特點,在制定教學(xué)大綱和選取教學(xué)內(nèi)容方面,保證固體物理教材系統(tǒng)性的基礎(chǔ)上增強與工科材料學(xué)科的聯(lián)系,在有限的學(xué)時內(nèi)將固體物理實用而且精髓的部分講授給學(xué)生,就必須精選教學(xué)內(nèi)容。學(xué)習(xí)固體物理最重要的是清楚基本概念,物理原理和物理模型。針對材料學(xué)科學(xué)生固體物理基礎(chǔ)知識薄弱的特點,盡量避免過于煩瑣的公式推導(dǎo),如必須公式推導(dǎo),要針對本專業(yè)學(xué)生所具備的基礎(chǔ),講清公式的來龍去脈,細化推導(dǎo)過程,讓學(xué)生真正理解并掌握相關(guān)知識。

此外,還有考慮材料專業(yè)其他學(xué)科的內(nèi)容與固體物理相關(guān)章節(jié)的聯(lián)系性。像晶體結(jié)構(gòu)、晶體缺陷等雖屬于固體物理的內(nèi)容,但該部分內(nèi)容已在材料科學(xué)基礎(chǔ)等專業(yè)課程中涉及到,沒有必須再去重復(fù)講述。對于一些涉及量子力學(xué)的基礎(chǔ)知識的章節(jié),如能帶理論部分,是必須要講清楚,學(xué)時重點掌握的內(nèi)容,但是,仍要在有限的學(xué)時中抽出時間補習(xí)這方面的基礎(chǔ)知識。

(三)傳統(tǒng)板書與現(xiàn)代多媒體結(jié)合,選擇最佳教學(xué)方式

多媒體技術(shù)是指使用計算機技術(shù),對文字、數(shù)據(jù)、圖形、圖像、動畫、聲音等多種媒體信息進行綜合處理和管理,使用戶可以通過多種感官與計算機進行實時信息交互的技術(shù),可以有效的地利用到課程教學(xué)當中。同傳統(tǒng)教學(xué)方式相比,多媒體教學(xué)方式具有直觀性、圖文聲像并茂、動態(tài)性等特點,能幫助學(xué)生多角度地理解掌握基本概念和方法,調(diào)動學(xué)生的注意力、學(xué)習(xí)興趣、學(xué)習(xí)積極性等,有助于突破教學(xué)難點?,F(xiàn)代多媒體技術(shù)的運用,使得課堂教學(xué)手段多樣化、現(xiàn)代化。例如,使用Diamond或Flash軟件,對晶體結(jié)構(gòu)進行三維動畫模擬,立體展示晶體的結(jié)構(gòu)特點。

然而,并不意味使用多媒體進行教學(xué)這是萬能的,多媒體教學(xué)在某些方面也存在著局限性,它并非適合固體物理的所有章節(jié)和內(nèi)容,而是有一定的范圍的,每一部分內(nèi)容對多媒體教學(xué)的要求是不同的。如,固體物理的晶體結(jié)構(gòu)、能帶結(jié)構(gòu)等部分,使用多媒體可以直觀、形象演示其內(nèi)容,學(xué)生也容易理解和掌握,但對于理論較強的部分,如倒格空間、晶格振動、能帶理論等,需要黑板板書與多媒體課件相結(jié)合,板書推導(dǎo)為主,多媒體演示為輔。因此,傳統(tǒng)的“板書的固體物理教學(xué)方式并不過時,而先進的現(xiàn)代化多媒體教學(xué)亦非萬能,它們是優(yōu)勢互補的,只有當我們把這兩種教學(xué)方式巧妙的捏合在一起的時候,課堂教學(xué)效果才能達到最佳狀態(tài)。這對于別的課程教學(xué)也具有借鑒意義。

(四)教學(xué)過程引入學(xué)科前沿知識

固體物理學(xué)雖是一門基礎(chǔ)理論很強的課程,同時也是一門應(yīng)用性很強的課程,它與當今最活躍的凝聚態(tài)物理以及新型材料科學(xué)緊密聯(lián)系在一起。固體物理其內(nèi)容豐富、體系龐大、理論性較強,同時,在教學(xué)和學(xué)習(xí)中,還要求學(xué)生能夠理論聯(lián)系實際,對所學(xué)知識進行理論方面的解釋。但是,該方面也是最容易出現(xiàn)理論知識與實際應(yīng)用相脫節(jié)的狀況。針對這一方面的問題,在傳統(tǒng)的固體物理教學(xué)中,將固體物理中相關(guān)的知識與本專業(yè)的其他課程相互聯(lián)系,也非常重要。

這就要在講授傳統(tǒng)固體物理教學(xué)內(nèi)容的基礎(chǔ)之上,適當?shù)匕雅c本學(xué)科知識相關(guān)的前沿動態(tài)和研究熱點引入課堂教學(xué),鞏固已學(xué)過的知識。本學(xué)科相關(guān)前沿知識的引入,一面強化了固體物理的基礎(chǔ)知識,拓寬了學(xué)生的專業(yè)基礎(chǔ)知識結(jié)構(gòu),開闊了科學(xué)研究的視野;另一方面也可以因材施教,滿足不同知識程度的學(xué)生學(xué)習(xí)的需要。

(五)重視課后作業(yè)

固體物理是一門專業(yè)性很強的基礎(chǔ)理論課程,絕大部分學(xué)生尚不能在課堂上理解并掌握所學(xué)知識,這就需要課后作業(yè)。課后作業(yè)是對課堂教學(xué)內(nèi)容加深理解和掌握的有效手段之一。課后作業(yè)同時也是課程教學(xué)的一個重要組成環(huán)節(jié),是學(xué)生對所學(xué)新知識進行鞏固發(fā)展的有效途徑,也是課堂教學(xué)的一個延續(xù)。如果學(xué)生能認真對待課后作業(yè),就會很好地鞏固、理解、運用所學(xué)知識;如果課后作業(yè)沒有充分發(fā)揮作用,則會直接影響到教學(xué)效果。對于材料專業(yè)的本科生來說,固體物理是一門基礎(chǔ)理論與實際應(yīng)用相結(jié)合的課程。在布置課后作業(yè)時,一方面要考慮到教材的習(xí)題中相對應(yīng)的題目作為學(xué)生的課后作業(yè);另一方面,為了加深課程中公式的推導(dǎo)的理解,可以將部分的公式推導(dǎo)安排在作業(yè)中,加深對課堂教學(xué)的理解。此外,針對某一些研究熱點,通過撰寫小論文,讓學(xué)生從固體物理的角度發(fā)表自己的看法,增強學(xué)生的自主學(xué)習(xí)的興趣,可以提高學(xué)生的自學(xué)能力、研究能力和創(chuàng)新能力。

三、結(jié)語

本文主要從固體物理課程的課堂內(nèi)容選擇、教學(xué)方式、教學(xué)形式以及課后作業(yè)等方面進行了探索。材料學(xué)科的固體物理課程有其自己的特點,應(yīng)做到精選教學(xué)內(nèi)容,重點突出,有的放矢。只要我們不斷改進教學(xué)手段和教學(xué)方法,鼓勵學(xué)生主觀能動性的發(fā)揮,就能大大提高固體物理的教學(xué)手段和教學(xué)質(zhì)量。

參考文獻:

[1]黃昆,韓汝琦,固體物理學(xué)[M].北京:高等教育出版社,1997.

第9篇

關(guān)鍵詞:智能信息處理技術(shù);量子計算智能導(dǎo)論;教學(xué)實踐

人類正被數(shù)據(jù)淹沒,卻饑渴于知識。面臨浩瀚無際而被污染的數(shù)據(jù),人們呼喚從數(shù)據(jù)中來一個去粗取精、去偽存真的技術(shù)。而數(shù)據(jù)挖掘就是從大量數(shù)據(jù)中識別出有效的、新穎的、潛在有用的,以及最終可理解的知識和模式的高級操作過程,所以數(shù)據(jù)挖掘也可以說是一個模式識別的過程,因此模式識別領(lǐng)域的許多技術(shù)經(jīng)過一定的改進便可以在數(shù)據(jù)挖掘中起重要的作用。計算智能(Computational Intelligence-CI)方法是傳統(tǒng)人工智能(Artificial Intelligence,AI)的擴展,它是模式識別技術(shù)發(fā)展的新階段[1]。

科學(xué)家預(yù)言:“21世紀,人類將從經(jīng)典信息時代跨越到量子信息時代”。創(chuàng)立了一個世紀的量子力學(xué)隨著20世紀90年代與信息科學(xué)交叉融合誕生的量子信息學(xué),已成為量子信息時代來臨的重要標志[2]。量子計算智能導(dǎo)論作為信息科學(xué)、計算機科學(xué)、智能信息處理、人工智能等相關(guān)專業(yè)的研究生專業(yè)課程,已經(jīng)在越來越多的高等學(xué)校開設(shè)。

由于量子計算智能是一門跨越包括物理學(xué)、數(shù)學(xué)、計算機科學(xué)、電子機械、通訊、生理學(xué)、進化理論和心理學(xué)等學(xué)科在內(nèi)的深奧科學(xué),因此量子計算智能導(dǎo)論的教學(xué)內(nèi)容和側(cè)重點的安排目前仍處在探索階段,尤其作為研究生課程如何使得學(xué)生在掌握深奧理論的基礎(chǔ)上結(jié)合實際應(yīng)用,將理論轉(zhuǎn)化為技術(shù)與工具,從而提高動手能力,這是每個研究生專業(yè)課任課老師的核心探索所在,因此就要求老師在授業(yè)解惑的同時關(guān)注前沿,以該學(xué)科的前沿領(lǐng)域為教學(xué)指引,進而更好的培養(yǎng)研究生主動探索知識的能力。

1教材選擇

一本好的教材為教學(xué)起到了畫龍點睛的作用,因此教材的選擇即是老師對教學(xué)內(nèi)容,教學(xué)目標和教學(xué)方法的選擇。我們選擇教材,期望該教材由淺入深、深入淺出、可讀性好,具有系統(tǒng)性、交叉性、前沿性等特點。由于量子計算智能導(dǎo)論為全校研究生的專業(yè)課程,而量子計算智能是一門多學(xué)科交叉的綜合型學(xué)科,因此我們要考慮到來自學(xué)校不同專業(yè)背景,以及在物理,數(shù)學(xué),工程優(yōu)化和進化理論基礎(chǔ)有限的兩難困境,所以首先選擇了一本關(guān)于量子計算的英文原版書作為教材之一,Michael Nielsen等人所著的《Quantum Computation and Quantum Information》[3],2003年高等教育出版社出版,該書全面介紹了量子計算與量子信息學(xué)領(lǐng)域的主要思想與技術(shù)。到目前為止,該領(lǐng)域的高速進展與學(xué)科交叉的特性使得初學(xué)者感到困惑而不易對其主要技術(shù)與結(jié)論有綜合性的認識,而該書特色在于對量子機制和計算機科學(xué)給予了指導(dǎo)性介紹,使得那些沒有物理學(xué)或計算機科學(xué)背景的學(xué)生對此也易于接受,為學(xué)生提供了詳實的關(guān)于量子計算的物理原理和基本概念;另外考慮到這門課程面向研究生,無論將來他們是直接就業(yè)還是繼續(xù)深造,都要注重實踐動手能力的培養(yǎng),要能夠?qū)⒆约核鶎W(xué)的書本知識轉(zhuǎn)化為技術(shù)和工具,去解決實際的工程和科研問題,因此我們還選擇了另外一門書,由李士勇教授所著的《量子計算與量子優(yōu)化算法》[4],哈爾濱工業(yè)大學(xué)出版社于2009年出版,該書著重講解了量子優(yōu)化算法,為實際工程應(yīng)用提供了新的思路,并啟發(fā)大家在量子計算機沒有走出實驗室的今天,如何利用現(xiàn)有的數(shù)字式計算機構(gòu)造具有量子特性的快速算法。當然考慮到全校研究生的專業(yè)知識背景不同,我們也推薦了中南大學(xué)蔡自興教授等編著,2004年由清華大學(xué)出版社出版的《人工智能及其應(yīng)用:研究生用書(第三版)》[5],該書是蔡自興為主講教授的國家精品課程人工智能的配套教材,該本書中系統(tǒng)全面的講解了高級知識推理、分布式人工智能與艾真體、計算智能、進化計算、群智能優(yōu)化、自然計算、免疫計算以及知識發(fā)現(xiàn)和數(shù)據(jù)挖掘等近年的熱點智能方法,從而輔助學(xué)生了解人工智能,以及人工智能如何發(fā)展到計算智能,使得學(xué)生全面認識學(xué)科的發(fā)展和傳承性,為今后學(xué)習(xí)量子計算智能打下堅實的理論基礎(chǔ)。

2教學(xué)內(nèi)容

本課程從量子計算的基本概念和原理出發(fā),重點講解量子計算基礎(chǔ)和基本的量子算法;并從量子優(yōu)化算法拓展開來。該門課程我們安排了46學(xué)時,具體安排如下:第1章,量子力學(xué)基礎(chǔ)(2學(xué)時);第2章,量子計算基礎(chǔ)(4學(xué)時);第3章,基本量子算法(4學(xué)時);第4章,Grover量子搜索算法的改進(4學(xué)時);第5章,量子遺傳算法(8學(xué)時);第6章,量子群智能優(yōu)化算法(8學(xué)時);第7章,量子神經(jīng)網(wǎng)絡(luò)模型與算法(8學(xué)時);第8章,量子遺傳算法在模糊神經(jīng)控制中的應(yīng)用(8學(xué)時)。

3教學(xué)方法

3.1理論與實踐相結(jié)合的教學(xué)方法

量子計算智能導(dǎo)論是一門多學(xué)科交叉的綜合型學(xué)科。選課的同學(xué)來自全校,各個的專業(yè)背景不同,但是大家的共同需求是一樣的,就是從課程中掌握一種用于解決實際問題的工程技術(shù),但是工程技術(shù)的掌握也需要理論的支撐,因此我們在教學(xué)實踐中總結(jié)出了一套方法,具體做法是將教學(xué)內(nèi)容劃分為:理論型和實踐型。

理論型教學(xué)指的是發(fā)展完善的量子計算基本原理和方法。其內(nèi)容包括:量子位、量子線路、量子Fourier 變換、量子搜索算法和量子計算機的物理實現(xiàn)等。而其中量子位、量子線路以及量子算法都是以量子相對論為基礎(chǔ)的,這也是量子計算的本質(zhì)原理,而較之我們熟悉的數(shù)字式計算機和計算方式有著本質(zhì)的區(qū)別。我們在教學(xué)中由淺入深,通過PPT授課,采取理論與實例相結(jié)合的講授方式。下面給出了一個我們在教學(xué)中的實例:將量子計算問題形象化。具體內(nèi)容如下。

讓我們想象一下下面這個問題。我們要找一條穿過復(fù)雜迷宮的路。每次我們沿著一條路走,很快就會碰到新的岔路。即使知道出去的路,還是容易迷路。換句話說,有一個著名的走迷宮算法就是右手法則――順著右手邊的墻走,直到出去(包括繞過絕路)。這條路也許并不很短,但是至少您不會反復(fù)走相同的過道。以計算機術(shù)語表述,這條規(guī)則也可以稱作遞歸樹下行?,F(xiàn)在讓我們想象另外一種解決方案。站在迷宮入口,釋放足夠數(shù)量的著色氣體,以同時充滿迷宮的每條過道。讓一位合作者站在出口處。當她看到一縷著色氣體出來時,就向那些氣體粒子詢問它們走過的路徑。她詢問的第一個粒子走過的路徑最有可能是穿過迷宮的所有可能路徑中最短的一條。當然,氣體顆粒絕不會給我們講述它們的旅行。但是 量子算法以一種同我們的方案非常類似的方式運作。即,量子算法先把整個問題空間填滿,然后只需費心去問問正確的解決方案(把所有的絕路排除在答案空間以外)。這樣以來,一個枯燥晦澀的量子算法就被很形象的解釋,因此增強了學(xué)生的記憶也加深了理解,從而提高了學(xué)生的學(xué)習(xí)興趣。

實踐型教學(xué)指的是正在發(fā)展中的量子計算智能方法的熱點問題。其內(nèi)容包括:量子遺傳算法,混沌量子免疫算法,量子蟻群算法,量子粒子群算法,量子神經(jīng)網(wǎng)絡(luò)模型與算法,和這些算法在實際工程優(yōu)化中的應(yīng)用。這部分內(nèi)容屬于本學(xué)科的前沿,但也是熱點問題,因此這部分我們在教學(xué)中忽略理論推導(dǎo),重點強調(diào)實際操作,在PPT課件中增加仿真實例的講解;并在課下布置相應(yīng)的上機操作習(xí)題,配合上機實踐課程,鍛煉學(xué)生的動手能力,同時也引導(dǎo)學(xué)生去關(guān)注這些前沿,從而培養(yǎng)他們的科研素養(yǎng)。

為了體現(xiàn)該門課的教學(xué)特點,我們在考核方式上,采取考試與報告相結(jié)合的方式,其中理論部分我們采取閉卷考試,占總考評分數(shù)的40%;實踐部分采取上機技術(shù)報告考核,內(nèi)容為上機實踐課程布置的大作業(yè),給出詳實的算法流程圖和仿真結(jié)果與分析,占總考評分數(shù)的40%;出勤率占總考評分數(shù)的20%。

3.2科研素養(yǎng)的培養(yǎng)與實踐能力的提高

科研素養(yǎng)的最核心部分,就是一個人對待科研情感態(tài)度和價值觀,科研素養(yǎng)的培養(yǎng)不僅使學(xué)生獲得知識和技能,更重要的是使其獲得科學(xué)思想、科學(xué)精神和科學(xué)方法的熏陶和培養(yǎng)。正如溫總理說的那樣:“教是為了不教,學(xué)是為了會學(xué)”,當學(xué)生將課本內(nèi)容遺忘后,遺留下來的東西即是他們所具備的科研素養(yǎng)。因此,在教學(xué)中,我們的宗旨也是提高學(xué)生的科研素養(yǎng),量子計算智能導(dǎo)論是一門理論和實踐緊密結(jié)合的學(xué)科,該學(xué)科的發(fā)展日新月異,在信息處理領(lǐng)域的關(guān)注度也越來越高。在教學(xué)實踐中,我們采用了上機實踐和技術(shù)報告相結(jié)合的教學(xué)方式。掌握各種量子計算智能方法的原理和流程是這門課程教學(xué)的首要任務(wù),因此學(xué)生結(jié)合各自研究方向?qū)崿F(xiàn)量子智能算法在實際科研任務(wù)中的優(yōu)化問題求解。在上機實踐中,學(xué)生不僅要掌握該智能算法的流程而且重點關(guān)注學(xué)生對

自己科研任務(wù)的建模,學(xué)會系統(tǒng)分析問題,建立合理的數(shù)學(xué)模型,并給出理論分析。上機實踐驗收中,我們不但考察其結(jié)果展示,更增加了上機實踐的技術(shù)報告,用來分析模型建立的合理性,從而培養(yǎng)學(xué)生對待科研問題的分析素養(yǎng)和建模素養(yǎng)。在技術(shù)報告中,我們要求學(xué)生給出幾種可供參考的建模模型,并分析各自的優(yōu)勢,和選擇這一解決方案的依據(jù)。由于量子計算智能導(dǎo)論是面向研究生開設(shè)的課程,在教學(xué)中,我們更佳關(guān)注其分析問題的能力,和解決問題的合理性的思考能力,從而培養(yǎng)學(xué)生的科研素養(yǎng)。

4結(jié)語

把教學(xué)當做一門藝術(shù),是我們作為高校老師畢生追求的目標,如何做到重點講透,難點講通,要點講清,這也是我們多年教學(xué)中一直關(guān)注的關(guān)鍵點。我們在教學(xué)中反對“灌輸式”,強調(diào)“啟發(fā)式”,以實際應(yīng)用先導(dǎo)教學(xué)是非常可取的,也收到了良好的效果。量子計算智能導(dǎo)論是一門綜合型交叉學(xué)科,且面向研究生開設(shè),因此在教學(xué)實踐中,我們十分重視學(xué)生科研素養(yǎng)的培養(yǎng)。通過上機實踐和技術(shù)報告的形式引導(dǎo)學(xué)生積極動手,積極思考。希望這些教學(xué)中的點滴供同行們交流探討。

參考文獻:

[1] 焦李成,劉芳,緱水平,等. 智能數(shù)據(jù)挖掘與知識發(fā)現(xiàn)[M]. 西安:西安電子科技大學(xué)出版社,2006.

[2] 田新華. 跟蹤國際學(xué)術(shù)前沿迎接量子信息時代:《量子計算與量子優(yōu)化算法》評介[J]. 科技導(dǎo)報,2010,28(6):122.

[3]Michael A. Nielsen ,Isaac L. Chuang. Quantum Computation and Quantum Information [M]. 北京:高等教育出版社,2003.

[4] 李士勇,李盼池. 量子計算與量子優(yōu)化算法[M]. 哈爾濱:哈爾濱工業(yè)大學(xué)出版社,2009.

[5] 蔡自興,徐光v. 人工智能及其應(yīng)用:研究生用書[M]. 3版. 北京:清華大學(xué)出版社,2004.

Exploration on Introduction to Quantum Computational Intelligence

LI Yangyang, SHANG Ronghua, JIAO Licheng

(School of Electronic Engineering, Xidian University, Xi’an 710071, China)