摘要:目的:介紹單臂試驗連續(xù)型數(shù)據(jù)的Meta分析模型、貝葉斯方法及實現(xiàn)。方法:闡述正態(tài)-正態(tài)層次模型,基于該模型框架,以貝葉斯方法擬合隨機效應模型,對效應參數(shù)μ和異質(zhì)性參數(shù)τ分別選擇不同的先驗,使用R軟件的bayesmeta包對兩個文獻數(shù)據(jù)重新分析。結(jié)果:在正態(tài)-正態(tài)層次模型框架下,基于不同的先驗信息,貝葉斯Meta分析結(jié)果為:數(shù)據(jù)1參數(shù)μ的點估計及95%CI分別為-4.26(-6.97,-1.92)和-4.50(-9.27,-0.53),參數(shù)τ點估計及95%CI分別為1.51(0.41,2.75)和2.28(0.00,6.57);數(shù)據(jù)2參數(shù)μ的點估計及95%CI分別為-4.07(-5.54,-2.71)和-4.12(-5.96,-2.46),參數(shù)τ點估計及95%CI分別為1.54(0.78,2.48)和1.81(0.74,3.51)。結(jié)論:不同的先驗可能影響參數(shù)估計值?;贜NHM框架下的貝葉斯方法適用于單臂試驗連續(xù)型數(shù)據(jù)的Meta分析。Bayesmeta包以其簡單、快速、準確、可重量性算法等可以用于實現(xiàn)貝葉斯隨機效應模型Meta分析。
注:因版權(quán)方要求,不能公開全文,如需全文,請咨詢雜志社